Skip to main content
Log in

Stochastic particle packing with specified granulometry and porosity

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This work presents a technique for particle size generation and placement in arbitrary closed domains. Its main application is the simulation of granular media described by disks. Particle size generation is based on the statistical analysis of granulometric curves which are used as empirical cumulative distribution functions to sample from mixtures of uniform distributions. The desired porosity is attained by selecting a certain number of particles, and their placement is performed by a stochastic point process. We present an application analyzing different types of sand and clay, where we model the grain size with the gamma, lognormal, Weibull and hyperbolic distributions. The parameters from the resulting best fit are used to generate samples from the theoretical distribution, which are used for filling a finite-size area with non-overlapping disks deployed by a Simple Sequential Inhibition stochastic point process. Such filled areas are relevant as plausible inputs for assessing Discrete Element Method and similar techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aksoy H.: Use of gamma distribution in hydrological analysis. Turk. J. Eng. Environ. Sci. 24, 419–428 (2000)

    Google Scholar 

  2. Bagi K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7, 31–43 (2005)

    Article  MATH  Google Scholar 

  3. Bagnold R.A.: The Physics of Blown Sands and Desert Dunes, 2nd edn. Chapman and Hall, Methuel, London (1941)

    Google Scholar 

  4. Bagnold R.A., Barndorff-Nielsen O.: The pattern of natural size distributions. Sedimentology 27(2), 199–207 (1980). doi:10.1111/j.1365-3091.1980.tb01170.x

    Article  ADS  Google Scholar 

  5. Barndorff-Nielsen O.E.: Exponentially decreasing distributions for logarithm of particle-size. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 353(1674), 401–419 (1977)

    Article  ADS  Google Scholar 

  6. Barndorff-Nielsen O.E.: Hyperbolic distribution and distribution on hyperbolae. Scand. J. Stat. 5, 151–157 (1978)

    MATH  MathSciNet  Google Scholar 

  7. Barndorff-Nielsen O.E., Blaesild P.: Hyperbolic Distributions and Ramifications: Contributions to Theory and Application, vol. 4, pp. 19–44. Reidel, Dordrecht (1981)

    Google Scholar 

  8. Barndorff-Nielsen, O.E., Blaesild, P.: Hyperbolic distributions. In: Encyclopedia of Statistical Sciences, vol. 3. Wiley (1983)

  9. Barndorff-Nielsen, O.E., Blaesild, P., Jensen, J.L., Sorensen, M.: The fascination of sand. In: Atkinson, A.C., Fienberg S.E. (eds.) A Celebration of Statistics: The International Statistical Institute ISI centenary volume, vol. Centenary volume of the International Statistical Institute, chap. 4, pp. 57–87. Springer (1985)

  10. Basu B., Tiwari D., Kundu D., Prasad R.: Is Weibull distribution the most appropriate statistical strength distribution for brittle materials. Ceram. Int. 35(1), 237–246 (2009). doi:10.1016/j.ceramint.2007.10.003

    Article  Google Scholar 

  11. Berthelsen K.K., Møller J.: A primer on perfect simulation for spatial point processes. Bull. Brazilian Math. Soc. 33(3), 351–367 (2002). doi:10.1007/s005740200019

    Article  MATH  Google Scholar 

  12. Bittelli M., Campbell G.S., Flury M.: Characterization of particle-size distribution in soils with a fragmentation model. Soil Sci. Soc. Am. J. 63(4), 782–788 (1999)

    Article  Google Scholar 

  13. Buchan G.D., Grewal K.S., Robson A.B.: Applicability of the simple lognormal model to particle-size distribution in soils. Soil Sci. 147, 155–161 (1989)

    Article  Google Scholar 

  14. Buchan G.D., Grewal K.S., Robson A.B.: Improved models of particle-size distribution—an illustration of model comparison techniques. Soil Sci. Soc. Am. J. 57(4), 901–908 (1993)

    Article  Google Scholar 

  15. Cadilhe, A., Araújo, N.A.M., Privman, V.: Random sequential adsorption: from continuum to lattice and pre-patterned substrates. J. Phys. Condens. Matter 19, 065124 (12pp) (2007)

    Google Scholar 

  16. Coussy O.: Poromechanics. Wiley, Chichester (2004)

    Google Scholar 

  17. Crawley M.J.: The R Book. Wiley, Chichester (2007)

    Book  MATH  Google Scholar 

  18. Cui L., O’Sullivan C.: Analysis of a triangulation based approach for specimen generation for discrete element simulation. Granul. Matter 5, 135–145 (2003)

    Article  MATH  Google Scholar 

  19. Cundall P.A.: Formulation of a three dimensional distinct element model-part I: a scheme to detect and represent contacts in a system of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988)

    Google Scholar 

  20. Cundall P.A., Strack O.D.L.: A discrete numerical method for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  21. da Silva E.M., Lima J.E.F.W., Rodrigues L.N., de Azevedo J.A.: Comparison of mathematical models for fitting particle-size distribution curves. Pesquisa Agropecuaria Brasileira 39(4), 363–370 (2004)

    Article  Google Scholar 

  22. Eshel G., Levy G.J., Mingelgrin U., Singer M.J.: Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 68(3), 736–743 (2004)

    Article  Google Scholar 

  23. Feng, Y.T., Han, K., Owen, D.R.J.: Filling domains with disks: an advancing front approach. Methods Eng. 56(5), 699–731 (2003)

    Article  MATH  Google Scholar 

  24. Fieller N.R.J., Flenley E.C.: Statistics of particle size data. Appl. Stat. 41(1), 127–146 (1992)

    Article  MATH  Google Scholar 

  25. Fisher R.A., Odén S.: The theory of the mechanical analysis of sediments by means of the automatic balance. Proc. R. Soc. Edinb. 44, 98–115 (1923)

    Google Scholar 

  26. Fredlund M.D., Fredlund D.G., Wilson G.W.: An equation to represent grain-size distribution. Can. Geotech. J. 37(4), 817–827 (2000)

    Article  Google Scholar 

  27. Hwang S.I., Lee K.P., Lee D.S., Powers S.E.: Models for estimating soil particle-size distributions. Soil Sci. Soc. Am. J. 66(4), 1143–1150 (2002)

    Article  Google Scholar 

  28. Itasca, PFC2D 2.00 Particle Flow Code in Two Dimensions, Minneapolis, Minnesota (1998)

  29. Kadau D., Herrmann H.J.: Density profiles of loose and collapsed cohesive granular structures generated by ballistic deposition. Phys. Rev. E 83, 031301 (2011)

    Article  ADS  Google Scholar 

  30. Kadau D., Herrmann H.J. Jr, Andrade J.S.: Collapsing granular suspensions. Eur. Phys. J. E Soft Matter Biol. Phys. 30, 275–281 (2009)

    Article  Google Scholar 

  31. Labra, C., Oñate, E.: High-density sphere packing to discrete element method simulations. Commun. Numer. Methods Eng. 25(7), (2009)

  32. Lin X., Ng T.T.: A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique 47(2), 319–329 (1997)

    Google Scholar 

  33. Lohner R., Oñate E.: A general advancing front technique for filling space with arbitrary objects. Int. J. Numer. Methods Eng. 61, 1977–1991 (2004)

    Article  Google Scholar 

  34. Mallows C.L.: Some comments on Cp. Technometrics 15, 661–675 (1973)

    Article  MATH  Google Scholar 

  35. Martin M.A., Taguas F.J.: Fractal modelling, characterization and simulation of particle-size distributions in soil. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1973), 1457–1468 (1998)

    Article  ADS  MATH  Google Scholar 

  36. Morgan P.H., Mercer L.P., Flodin N.W.: General model for nutritional responses of higher organisms. Proc. Natl. Acad. Sci. 42, 4327–4331 (1975)

    Article  ADS  Google Scholar 

  37. Nemes A., Wösten J.H.M., Lilly A., Voshaar J.H.O.: Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases. Geoderma 90, 187–202 (1999)

    Article  Google Scholar 

  38. Privman V.: Dynamics of nonequilibrium deposition. Colloids Surf. A Physicochem. Eng. Aspects 165, 231–240 (2000)

    Article  Google Scholar 

  39. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2010). http://www.R-project.org. ISBN 3-900051-07-0

  40. Rosin P., Rammler E.: The laws governing the fineness of powdered coal. J. Inst. Fuel 7, 29–36 (1933)

    Google Scholar 

  41. Rousseva S.S.: Data transformations between soil texture schemes. Eur. J. Soil Sci. 48, 749–758 (1997)

    Article  Google Scholar 

  42. Shiozawa S., Campbell G.S.: On the calculation of mean particle diameter and standard deviation from sand, silt and clay fractions. Soil Sci. 152, 427–431 (1991)

    Article  Google Scholar 

  43. Shirazi M.A., Boersma L.: A unifying quantitative analysis of soil texture. Soil Sci. Soc. Am. J. 48, 142–147 (1984)

    Article  Google Scholar 

  44. Skaggs T.H., Arya L.M., Shouse P.J., Mohanty B.P.: Estimating particle-size distribution from limited soil texture data. Soil Sci. Soc. Am. J. 65(4), 1038–1044 (2001)

    Article  Google Scholar 

  45. Walker P.H., Chittleborough D.J.: Development of particle-size distributions in some alfisols of Southeastern Australia. Soil Sci. Soc. Am. J. 50, 394–400 (1986)

    Article  Google Scholar 

  46. Weibull W.A.: A statistical distribution function of wide applicability. J. Appl. Mech. 73, 293–297 (1951)

    Google Scholar 

  47. Zarate, F., Rojek, J., Oñate, E., Miquel, J.: Modelling of rock, soil and granular materials using spherical elements. In: Z. Waszczyszyn, J. Pamin (eds.) ECCM-2001 CD-ROM Proceedings of the Second European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering. Cracow (2001)

  48. Zarate, F., Rojek, J., Oñate, E., Miquel, J.: Thermomechanical discrete element formulation for wear analysis of rock cutting tools. Tech. rep., CIMNE (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro C. Frery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frery, A.C., Rivarola-Duarte, L., Ramos, V.C.L. et al. Stochastic particle packing with specified granulometry and porosity. Granular Matter 14, 27–36 (2012). https://doi.org/10.1007/s10035-011-0300-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0300-5

Keywords

Navigation