Skip to main content
Log in

Effects of density ratio and diameter ratio on critical incident angles of projectiles impacting granular media

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The dynamic behavior of projectiles upon impact with granular media was recorded using two high-speed video cameras for capturing different angles. We used steel, brass, tungsten carbide spheres, and alumina ceramic spheres with diameters in the range of 6–20 mm as the projectiles and polystyrene beads (6 mm in diameter) and glass beads (1.7 mm in diameter) as the granular media. Upon impact, the projectiles penetrated the media, rebounded from the media, or were deflected such that their resulting motion was in a horizontal direction. Post-impact motion of the projectiles depended on the impact angles of the projectiles, the density ratio (bulk density/projectile density), and the diameter ratio (granular diameter/projectile diameter) and not on the impact velocity. The post-impact motion of the projectiles did not follow a clear trend in terms of the transient angle; instead, we observed the existence of a transient region. On the basis of the area of the transient regions, an empirical equation was derived for determining the critical angle of projectiles (the angle at which they can penetrate the granular media) as a function of the density ratio and the diameter ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuwabara G., Kono K.: Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 26, 1230–1233 (1987)

    Article  ADS  Google Scholar 

  2. Labous L., Rosato A.D., Dave R.N.: Measurements of collisional properties of spheres using high-speed video analysis. Phys. Rev. E 56, 5717–5725 (1997)

    Article  ADS  Google Scholar 

  3. Louge M.Y., Adams M.E.: Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate. Phys. Rev. E 65, 021303 (2002)

    Article  ADS  Google Scholar 

  4. Moon S.J., Swift J.B., Swinney L.H.: role of friction in pattern formation in oscillated granular layers. Phys. Rev. E 69, 031301 (2004)

    Article  ADS  Google Scholar 

  5. McNamara S., Falcon E.: Simulations of vibrated granular medium with impact–velocity-dependent restitution coefficient. Phys. Rev. E 71, 031302 (2005)

    Article  ADS  Google Scholar 

  6. Uehara J.S., Ambroso M.A., Ojha R.P., Durian D.J.: Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90(19), 194301 (2003)

    Article  ADS  Google Scholar 

  7. Walsh A.M., Holloway K.E., Habdas P., de Bruyn J.R.: Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91(10), 104301 (2003)

    Article  ADS  Google Scholar 

  8. Newhall K.A., Durian D.J.: Projectile-shape dependence of impact craters in loose granular media. Phys. Rev. E 68, 060301 (2003)

    Article  ADS  Google Scholar 

  9. Pica Ciamarra M., Lara A.H., Lee A.T., Goldman D.I., Vishik I., Swinney H.L.: Dynamics of drag and force distributions for projectile impact in a granular medium. Phys. Rev. Lett. 92(19), 194301 (2004)

    Article  ADS  Google Scholar 

  10. Goldman D.I., Umbanhowar P.: Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77, 021308 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. de Vet S.J., de Bruyn J.R.: Shape of impact craters in granular media. Phys. Rev. E 76, 041306 (2007)

    Article  ADS  Google Scholar 

  12. Zheng X.-J., Wang Z.-T., Qiu Z.-G.: Impact craters in loose granular media. Eur. Phys. J. E 13, 321–324 (2004)

    Article  Google Scholar 

  13. Rioual R., Valance A., Bideau D.: Experimental study of the collision process of a grain on a two-dimensional granular bed. Phys. Rev. E 62(2), 2450–2459 (2000)

    Article  ADS  Google Scholar 

  14. Rioual R., Valance A., Bideau D.: Collision process of a bead on a two-dimensional bead packing: importance of the inter-granular contacts. Europhys. Lett. 61(2), 194–200 (2003)

    Article  ADS  Google Scholar 

  15. Oger L., Ammi M., Valance A., Beladjine D.: Discrete element method studies of the collision of one rapid sphere on 2D and 3D packings. Europhys. J. E 17, 467–476 (2005)

    Google Scholar 

  16. Crassous J., Beladjine D., Valance A.: Impact of a projectile on a granular medium described by a collision model. Phys. Rev. Lett. 99, 248001 (2007)

    Article  ADS  Google Scholar 

  17. Ammi M., Oger L., Beladjine D., Valance A.: Three-dimensional analysis of the collision process of a bead on a granular packing. Phys. Rev. E 79, 021305 (2009)

    Article  ADS  Google Scholar 

  18. Holsapple K.A.: The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21, 333–373 (1993)

    Article  ADS  Google Scholar 

  19. Yamamoto S., Barnouin-Jha O.S., Toriumi T., Sugita S., Matsui T.: An empirical model for transient crater growth in granular targets based on direct observations. Icarus 203, 310–319 (2009)

    Article  ADS  Google Scholar 

  20. Gaul D.E., Wedekind J.A.: Experimental studies of oblique impact. Proc. Lunar Planet. Sci. 9, 3843–3875 (1978)

    ADS  Google Scholar 

  21. Hartmann W.K.: Impact experiments: 1. Ejecta velocity distributions and related results from regolith targets. Icarus 63, 69–98 (1985)

    Article  ADS  Google Scholar 

  22. Yamamoto S.: Measurement of impact ejecta from regolith targets in oblique impacts. Icarus 158, 87–97 (2002)

    Article  ADS  Google Scholar 

  23. Takagi, S., Fujiwara, A., Abe, M.: Experimental and theoretical study of reflection of solid body fragments on flat surface. In: Proceedings of Fall Meeting, Japan Society Planetary Science (in Japanese), p. 58 (1998)

  24. Okano, K., Nonaka, S., Takayama, K.: Study on design of projector for Nereus sample return project. In: Proceedings of Symposium on Shock Waves Japan (in Japanese), pp. 53–56 (1999)

  25. Soliman A.S., Reid S.R., Johnson W.: The effect of spherical projectile speed in ricochet off water and sand. Int. J. Mech. Sci. 18, 279–284 (1976)

    Article  Google Scholar 

  26. Al-Raoush R., Alsaleh M.: Simulation of random packing of polydisperse particles. Powder Technol. 176, 47–55 (2007)

    Article  Google Scholar 

  27. Clanet C., Hersen F., Bocquet L.: Secrets of successful stone-skipping. Nature 427(6969), 29 (2004)

    Article  ADS  Google Scholar 

  28. Nagohiro S., Hayakawa Y.: Theoretical and numerical approach to magic angle of stone skipping. Phys. Rev. Lett. 94(17), 174501 (2005)

    Article  ADS  Google Scholar 

  29. Thoroddsen S.T., Shen A.Q.: Granular jets. Phys. Fluids 13, 4–6 (2001)

    Article  ADS  Google Scholar 

  30. Lohse D., Bergmann R., Mikkelsen R., Zeilstra C., van der Meer D., Verluis M., van der Hoef M., Kuipers H.: Impact on soft sand: void collapse and jet formation. Phys. Rev. Lett. 93(19), 198003 (2004)

    Article  ADS  Google Scholar 

  31. Lohse D., Rauhe R., Bermann R., van der Meer D.: Creating a dry variety of quicksand. Nature 432, 689 (2004)

    Article  ADS  Google Scholar 

  32. Royer J.R., Corwin E.I., Flior A., Cordero M.-L., Rivers M., Eng P., Jaeger H.M.: Formation of granular jets observed by high-speed X-ray radiography. Nat. Phys. 1, 164–167 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nishida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, M., Okumura, M. & Tanaka, K. Effects of density ratio and diameter ratio on critical incident angles of projectiles impacting granular media. Granular Matter 12, 337–344 (2010). https://doi.org/10.1007/s10035-010-0186-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0186-7

Keywords

Navigation