Skip to main content

Advertisement

Log in

Responses of Tree Transpiration and Growth to Seasonal Rainfall Redistribution in a Subtropical Evergreen Broad-Leaved Forest

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Precipitation changes such as more frequent drought and altered precipitation seasonality may impose substantial impacts on the structure and functioning of forest ecosystems. A better understanding of tree responses to precipitation changes can provide fundamental information for the conservation and management of forests under future climate regimes. We conducted a 2-year seasonal rainfall redistribution experiment to assess the responses of tree transpiration and growth to manipulated precipitation changes in a subtropical evergreen broad-leaved forest. Three precipitation treatments were administered including a drier dry season and wetter wet season treatment (DD), an extended dry season and wetter wet season treatment (ED), and an ambient control treatment, with the total amount of annual rainfall being kept the same among the three treatments. Our results showed that the DD and ED treatments reduced daily transpiration of Schima superba by 8–16 and 13–25%, respectively. The ED treatment also reduced the DBH increment of larger S. superba individuals. In contrast, neither treatment showed obvious effects on the transpiration and DBH increment of another dominant species Michelia macclurei. However, the transpiration of both species showed clear inter-annual differences between the 2 years with contrasting annual rainfall (2094 vs 1582 mm). S. superba had a lower transpiration-to-precipitation ratio (T/P) compared to M. macclurei and showed decreased sensitivities to total solar radiation and vapor pressure deficit under the DD and ED treatments. These results indicate the deep-rooted S. superba may be suppressed with a lower ability to obtain water and assimilate carbon compared to the shallow-rooted M. macclurei under the precipitation seasonality changes, which could potentially cause shifts in species dominance within the forest community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Belk EL, Markewitz D, Rasmussen TC, Carvalho EJM, Nepstad DC, Davidson EA. 2007. Modeling the effects of throughfall reduction on soil water content in a Brazilian Oxisol under a moist tropical forest. Water Resour Res 43:1–14.

    Article  Google Scholar 

  • Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Körner C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K. 2012. Precipitation manipulation experiments-challenges and recommendations for the future. Ecol Lett 15:899–911.

    Article  PubMed  Google Scholar 

  • Bovard BD, Curtis PS, Vogel CS, Su HB, Schmid HP. 2005. Environmental controls on sap flow in a northern hardwood forest. Tree Physiol 25:31–8.

    Article  PubMed  CAS  Google Scholar 

  • Brando P, Ray D, Nepstad D, Cardinot G, Curran LM, Oliveira R. 2006. Effects of partial throughfall exclusion on the phenology of Coussarea racemosa (Rubiaceae) in an east-central Amazon rainforest. Oecologia 150:181–9.

    Article  PubMed  Google Scholar 

  • Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P. 2008. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos T R SOC B 363:1839–48.

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW. 2005. Regional vegetation die-off in response to global-change-type drought. P Natl Acad Sci USA 102:15144–8.

    Article  CAS  Google Scholar 

  • Bush SE, Hultine KR, Sperry JS, Ehleringer JR, Philips N. 2010. Calibration of thermal dissipation sap flow probes for ring and diffuse porous trees. Tree Physiol 30:1545–54.

    Article  PubMed  Google Scholar 

  • Campbell GS, Norman JM. 1998. An introduction to environmental biophysics. Springer.

  • Churkina G, Running SW, Schloss AL, Intercomparison T, Model POFTPN. 1999. Comparing global models of terrestrial net primary productivity (NPP): the importance of water availability. Global Change Biol 5:46–55.

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, Noblet ND, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33.

    Article  PubMed  CAS  Google Scholar 

  • Cinnirella S, Magnani F, Saracino A, Borghetti M. 2002. Response of a mature Pinus laricio plantation to a three-year restriction of water supply: structural and functional acclimation to drought. Tree Physiol 22:21–30.

    Article  PubMed  Google Scholar 

  • Cramer MD, Hoffmann V, Verboom GA. 2008. Nutrient availability moderates transpiration in Ehrharta calycina. New Phytol 179:1048–57.

    Article  PubMed  CAS  Google Scholar 

  • Cramer MD, Hawkins HJ, Verboom GA. 2009. The importance of nutritional regulation of plant water flux. Oecologia 161:15–24.

    Article  PubMed  Google Scholar 

  • Cregger MA, McDowell NG, Pangle RE, Pockman WT, Classen AT. 2014. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem. Funct Ecol 28:1534–44.

    Article  Google Scholar 

  • da Costa ACL, Galbraith D, Almeida S, Portela BTT, da Costa M, de Athaydes Silva Junior J, Braga AP, de Gonçalves PHL, de Oliveira AA, Fisher R, Phillips OL, Metcalfe DB, Levy P, Meir P. 2010. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol 187:579–91.

    Article  PubMed  Google Scholar 

  • Davidson EA, Nepstad DC, Ishida FY, Brando PM. 2008. Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biol 14:2582–90.

    Article  Google Scholar 

  • Fekedulegn D, Hicks RR, Colbert JJ. 2003. Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed. Forest Ecol Manag 177:409–25.

    Article  Google Scholar 

  • Fisher RA, Williams M, da Costa AL, Malhi Y, da Costa RF, Almeida S, Meir P. 2007. The response of an Eastern Amazonian rain forest to drought stress, results and modelling analyses from a throughfall exclusion experiment. Global Change Biol 13:2361–78.

    Article  Google Scholar 

  • Fu SL, Lin YB, Rao XQ, Liu SP. 2011. The dataset of observation and research on chinese ecosystem: forest ecosystem of Heshan Station, Guangdong Province (1998–2008). Beijing: China Agriculture Press.

    Google Scholar 

  • Gao J, Zhao P, Shen W, Niu J, Zhu L, Ni G. 2015. Biophysical limits to responses of water flux to vapor pressure deficit in seven tree species with contrasting land use regimes. Agr Forest Meteorol 200:258–69.

    Article  Google Scholar 

  • Garbulsky MF, Peñuelas J, Papale D, Ardö J, Goulden ML, Kiely G, Richardson AD, Rotenberg E, Veenendaal EM, Filella L. 2010. Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Global Ecol Biogeogr 19:253–67.

    Article  Google Scholar 

  • Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree physiol 3:309–20.

    Article  PubMed  CAS  Google Scholar 

  • Hanson PJ. 2000. Large-scale water manipulations. In: Running SW, Thornton PE, Nemani R, Glassy J, Eds. Methods in ecosystem science. New York: Springer.

    Google Scholar 

  • Hao YR, Peng SL. 2009. Root of different dominant tree species in zonal vegetation in southern subtropical China. Journal of Beijing Forestry University 31:25–30 (In Chinese with English abstract).

    Google Scholar 

  • Hartmann H. 2011. Will a 385 million year-struggle for light become a struggle for water and for carbon?—How trees may cope with more frequent climate change-type drought events. Global Change Biol 17:642–55.

    Article  Google Scholar 

  • Hultine KR, Nagler PL, Morino K, Bush SE, Burtch KG, Dennison PE, Glenn EP, Ehleringer JR. 2010. Sap flux-scaled transpiration by tamarisk (Tamarix spp.) before, during and after episodic defoliation by the saltcedar leaf beetle (Diorhabda carinulata). Agric For Meteorol 150:1467–75.

    Article  Google Scholar 

  • Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S. 2004. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–68.

    Article  PubMed  Google Scholar 

  • Irvine J, Perks MP, Magnani F, Grace J. 1998. The response of Pinus sylvestris to drought, stomatal control of transpiration and hydraulic conductance. Tree physiol 18:393–402.

    Article  PubMed  Google Scholar 

  • Jalali M. 2005. Nitrates leaching from agricultural land in Hamadan, western Iran. Agr Ecosyst Environ 110:210–18.

    Article  CAS  Google Scholar 

  • Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC. 2012. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Science 195:48–53.

    Article  PubMed  CAS  Google Scholar 

  • Jones HG. 2013. Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press.

  • Kent M. 2011. Vegetation description and data analysis: a practical approach. John Wiley & Sons.

  • Knapp AK, Briggs JM, Koelliker JK. 2001. Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems 4:19–28.

    Article  Google Scholar 

  • Knapp AK, Smith MD. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–4.

    Article  PubMed  CAS  Google Scholar 

  • Köcher P, Horna V, Leuschner C. 2013. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiol 33:817–32.

    Article  PubMed  Google Scholar 

  • Kunert N, Cárdenas AM. 2015. Are mixed tropical tree plantations more resistant to drought than monocultures? Forests 6:2029–46.

    Article  Google Scholar 

  • Li XD. 1984. Preliminary research on nutrient element distribution and biomass characteristics of Michelia macclurei plantations under different site conditions. Journal of Guangxi Agricultural and Biological Science 2:88–100 (In Chinese).

    Google Scholar 

  • Li Z. 2008. Impacts of upper tropospheric cooling upon the late spring drought in East Asia simulated by a regional climate model. Adv Atmos Sci 25:555–62.

    Article  Google Scholar 

  • Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodríguez-Cortina R. 2009. Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Global Change Biol 15:2163–75.

    Article  Google Scholar 

  • Liu L, Wang X, Lajeunesse MJ, Miao G, Piao S, Wan S, Wu Y, Wang Z, Yang S, Li P, Deng M. 2016. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Glob Change Biol 22:1394–405.

    Article  Google Scholar 

  • Loik ME, Breshears DD, Lauenroth WK, Belnap J. 2004. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141:269–81.

    Article  PubMed  Google Scholar 

  • Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–6.

    Article  PubMed  CAS  Google Scholar 

  • MacKay SL, Arain MA, Khomik M, Brodeur JJ, Schumacher J, Hartmann H, Peichl M. 2012. The impact of induced drought on transpiration and growth in a temperate pine plantation forest. Hydrol Process 26:1779–91.

    Article  Google Scholar 

  • Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR. 2009. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–30.

    Article  Google Scholar 

  • McDowell NG, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. 2008. Mechanisms of plant survival and mortality during drought, why do some plants survive while others succumb to drought? New phytol 178:719–39.

    Article  PubMed  Google Scholar 

  • McDowell NG. 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller PC. 2012. Resource use by chaparral and matorral, a comparison of vegetation function in two Mediterranean type ecosystems. Springer Science & Business Media.

  • Min CC. 2012. Study on the Evapotranspiration of NSTEC based on RS and GIS (Master’s thesis, Hubei University).

  • Misson L, Degueldre D, Collin C, Rodriguez R, Rocheteau A, Ourcival J, Rambal S. 2011. Phenological responses to extreme droughts in a Mediterranean forest. Global Change Biol 17:1036–48.

    Article  Google Scholar 

  • Mott KA, Parkhurst DF. 1991. Stomatal responses to humidity in air and helox. Plant Cell Environ 14:509–15.

    Article  Google Scholar 

  • Muraoka H, Tang Y, Terashima I, Koizumi H, Washitani I. 2000. Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Plant Cell Environ 23:235–50.

    Article  CAS  Google Scholar 

  • Nepstad DC, Moutinho P, Dias-Filho MB, Davidson E, Cardinot G, Markewitz D, Figueiredo R, Vianna N, Chambers J, Ray D, Guerreiros JB, Lefebvre P, Sternberg L, Moreira M, Barros L, Ishida FY, Tohlver I, Belk E, Kalif K, Schwalbe K. 2002. The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. J Geophys Res 107.

  • Ogaya R, Peñuelas J. 2007. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol 189:291–9.

    Article  Google Scholar 

  • Oren R, Pataki DE. 2001. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 127:549–59.

    Article  PubMed  Google Scholar 

  • Oren R, Zimmermann R, Terbough J. 1996. Transpiration in upper Amazonia floodplain and upland forests in response to drought-breaking rains. Ecology 77:968–73.

    Article  Google Scholar 

  • Pangle RE, Limousin JM, Plaut JA, Yepez EA, Hudson PJ, Boutz AL, Gehres N, Pockman WT, McDowell NG. 2015. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon-juniper woodland. Ecol Evol 5:1618–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pataki DE, McCarthy HR, Litvak E, Pincetl S. 2011. Transpiration of urban forests in the Los Angeles metropolitan area. Ecol Appl 21:661–77.

    Article  PubMed  Google Scholar 

  • Pataki DE, Oren R. 2003. Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Adv Water Resour 26:1267–78.

    Article  Google Scholar 

  • Paw UKT, Falk M, Suchanek TH, Ustin SL, Chen J, Park Y-S, Winner WE, Thomas SC, Hsiao TC, Shaw RH. 2004. Carbon dioxide exchange between an old-growth forest and the atmosphere. Ecosystems 7:513–24.

    Google Scholar 

  • Peñuelas J, Filella I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J. 2004. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–46.

    Article  Google Scholar 

  • Plaut JA, Wadsworth WD, Pangle R, Yepez EA, McDowell NG, Pockman WT. 2013. Reduced transpiration response to precipitation pulses precedes mortality in a pinon-juniper woodland subject to prolonged drought. New Phytol 200:375–87.

    Article  PubMed  Google Scholar 

  • Pratt RB, Jacobsen AL, Ewers FW, Davis SD. 2007. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–98.

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS 101:11001–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richards AE, Wright IJ, Lenz TI, Zanne AE. 2014. Sapwood capacitance is greater in evergreen sclerophyll species growing in high compared to low-rainfall environments. Funct Ecol 28:734–44.

    Article  Google Scholar 

  • Ruehr NK, Law BE, Quandt D, Williams M. 2014. Effects of heat and drought on carbon and water dynamics in a regenerating semi-arid pine forest, a combined experimental and modeling approach. Biogeosciences 11:4139–56.

    Article  CAS  Google Scholar 

  • Sala A, Piper F, Hoch G. 2010. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–81.

    Article  PubMed  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC. 2012. Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–75.

    Article  PubMed  CAS  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F. 2007. Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. Plant Cell Environ 30:236–48.

    Article  PubMed  Google Scholar 

  • Scholz FG, Phillips NG, Bucci SJ, Meinzer FC, Goldstein G. 2011. Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. In: Meinzer FC, Lachenbruch B, Dawson TE, Eds. Size-and age-related changes in tree structure and function. Springer.

  • Scurlock JMO, Johnson K, Olson RJ. 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biol 8:736–53.

    Article  Google Scholar 

  • Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT. 2013. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37:153–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen W, Jenerette GD, Hui D, Phillips RP, Ren H. 2008. Effects of changing precipitation regimes on dryland soil respiration and C pool dynamics at rainfall event, seasonal and interannual scales. J Geophys Res 113.

  • Shen W, Reynolds JF, Hui D. 2009. Responses of dryland soil respiration and soil carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil temperature, precipitation, and atmospheric [CO2], a simulation analysis. Global Change Biol 15:2274–94.

    Article  Google Scholar 

  • Shen W, Jenerette GD, Hui D, Scott RL. 2016. Precipitation legacy effects on dryland ecosystem carbon fluxes: direction, magnitude and biogeochemical carryovers. Biogeosciences 13:425–39.

    Article  CAS  Google Scholar 

  • Smith MD, Knapp AK, Collins SL. 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90:3279–89.

    Article  PubMed  Google Scholar 

  • Sotta ED, Veldkamp E, Schwendenmann L, Guimaraes BR, Paixão RK, Ruivo MDLP, da Costa ACL, Meir P. 2007. Effects of an induced drought on soil carbon dioxide (CO2) efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil. Global Change Biol 13:2218–29.

    Article  Google Scholar 

  • Stocker T. 2014. Climate change 2013: the physical science basis: working group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

  • Unsworth MH, Phillips N, Link T, Bond BJ, Falk M, Harmon ME, Hinckley TM, Marks D. 2004. Components and controls of water flux in an old-growth Douglas-fir–western hemlock ecosystem. Ecosystems 7:468–81.

    Article  Google Scholar 

  • Vicca S, Bahn M, Estiarte M, van Loon EE, Vargas R et al. 2014. Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments. Biogeosciences 11:2991–3013.

    Article  CAS  Google Scholar 

  • Walter H. 1973. Vegetation of the earth in relation to climate and the eco-physiological conditions. English Universities Press.

  • Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw RM, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC. 2003. Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–52.

    Article  Google Scholar 

  • Wu Z, Dijkstra P, Koch GW, Penuelas J, Hungate BA. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biol 17:927–42.

    Article  Google Scholar 

  • Wullschleger SD, Hanson PJ. 2006. Sensitivity of canopy transpiration to altered precipitation in an upland oak forest, Evidence from a long-term field manipulation study. Global Change Biol 12:97–109.

    Article  Google Scholar 

  • Xin X, Yu R, Zhou T, Wang B. 2006. Drought in late spring of South China in recent decades. J Climate 19:3197–206.

    Article  Google Scholar 

  • Yang B. 2010. Study on underground biomass in evergreen subtropical broad-leaved forest of Gutian Mountain (Master’s thesis, Zhejiang Normal University).

  • Zeppel MJB, Wilks JV, Lewis JD. 2014. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11:3083–93.

    Article  Google Scholar 

  • Zhao Q, Jian S, Nunan N, Maestre FT, Tedersoo L, He J, Wei H, Tan X, Shen W. 2017. Altered precipitation seasonality impacts the dominant fungal but rare bacterial taxa in subtropical forest soils. Biol Fert Soils 53:231–45.

    Article  Google Scholar 

  • Zhou G, Wei X, Wu Y, Liu S, Huang Y, Yan J, Zhang D, Zhang Q, Liu J, Meng Z, Wang C, Chu G, Liu S, Tang X, Liu X. 2011. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Global Change Biol 17:3736–46.

    Article  Google Scholar 

  • Zhu LW, Zhao P, Cai XA, Zeng XP, Ni GY, Zhang JY, Zou LL, Mei TT, Yu MH. 2012. Effects of sap velocity on the daytime increase of stem CO2 efflux from stems of Schima superba trees. Trees 26:535–42.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant No. 41630752, 31130011, 41030638, 31290222) and the CAS/SAFEA International Partnership Program for Creative Research Teams. Sincere thanks to the staff in Heshan National Field Research Station of Forest Ecosystem, Chinese Academy of Sciences. We particularly thank Dr. Jianguo Gao who managed the sap flow measurement and Mr. Zhipeng Chen who helped with instruments maintenance. Two anonymous reviewers and the subject-matter editor provided constructive suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhao.

Additional information

Author contributions

Ping Zhao and Weijun Shen designed the research. Ping Zhao, Weijun Shen, Liwei Zhu, Guangyan Ni, Xiuhua Zhao, Zhenzhen Zhang, Xingquan Rao, Lei Ouyang, Xiaomin Zeng, Dan Sun and Yongbiao Lin performed the research. Yanting Hu analyzed the data and wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhao, P., Shen, W. et al. Responses of Tree Transpiration and Growth to Seasonal Rainfall Redistribution in a Subtropical Evergreen Broad-Leaved Forest. Ecosystems 21, 811–826 (2018). https://doi.org/10.1007/s10021-017-0185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0185-1

Keywords

Navigation