Skip to main content

Advertisement

Log in

Land–Sea Interactions and Consequences for Sub-Antarctic Marine Food Webs

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Resource subsidies can influence the structure and dynamics of recipient food webs in a wide range of ecosystems through direct and indirect effects. On the sub-Antarctic Prince Edward Islands (PEIs), large populations of top predators import substantial amounts of nutrients from the oceans to the islands. Guano runoff from the islands increases the availability of nutrients in the nearshore marine environment, supporting phytoplankton blooms. We apply food web models to the PEIs marine ecosystem to investigate food web responses to variability in resource subsidies. Modelled scenarios of island-associated blooms indicated small effects on the ecosystem under both normal bloom conditions and when the input of blooms was removed entirely. Benthic communities benefited most strongly from blooms and a fivefold increase in bloom production had broadly positive impacts throughout the entire food web, including the pelagic food web. Land-based predators were shown to contribute significantly to nearshore ecosystem production via their contributions to ammonia runoff. Transfers of material across the land–sea interface were estimated to contribute 0.73 t N km−2 y−1 to the nearshore ammonium pool. The effects of removing terrestrial nutrient input were very small when 100% of nutrient runoff was converted to island-associated bloom phytoplankton while the macrophyte production rate was held constant. If, however, macrophyte production was also supported in part or wholly by terrestrial nutrient runoff, the ecosystem-level effects of runoff variability were much greater and more broadly distributed throughout the food web. Given the potential of habitat linkages to alter or structure communities, populations, and environments, it is important to incorporate land–sea linkages into ecological models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Allan EL, Froneman PW, Durgadoo JV, McQuaid CD, Ansorge IJ, Richoux NB. 2013. Climate induced changes in a sub-Antarctic island food web: implications for inshore feeders. Ecol Evol . doi:10.1002/ece3.678.

    Google Scholar 

  • Allanson BR, Boden BP, Parker L, Duncombe Rae C. 1985. A contribution to the oceanology of the Prince Edward Islands. Siegfied WR, Condy PR, Laws RM, Eds. Antarctic Nutrient Cycles and Food Webs. Berlin: Springer. pp 38–45.

  • Anderson WB, Polis GA. 1999. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118:324–32.

    Article  Google Scholar 

  • Anderson WB, Wait DA, Stapp P. 2008. Resources from another place and time: responses to pulses in a spatially subsidized system. Ecology 3:660–70.

    Article  Google Scholar 

  • Ansorge IJ, Durgadoo JV, Pakhomov EA. 2009. Dynamics of physical and biological systems of the Prince Edward Islands in a changing climate. Papers Proc R Soc Tasman 143:15–18.

    Google Scholar 

  • Armand LK, Cornet-Barthaux V, Mosseri J, Queguiner B. 2008. Late summer diatom biomass and community structure on and around the naturally iron-fertilised Kerguelen Plateau in the Southern Ocean. Deep Sea Res Part II 55:653–76.

    Article  CAS  Google Scholar 

  • Atkinson A, Whitehouse MJ, Priddle J, Cripps GC, Ward P, Brandon MA. 2001. South Georgia, Antarctica: A productive, cold water, pelagic ecosystem. Mar Ecol Prog Ser 216:279–308.

    Article  CAS  Google Scholar 

  • Attwood CG, Lucas MI, Probyn TA, McQuaid CD, Fielding PJ. 1991. Production and standing stocks of the kelp Macrocystis laevis Hay at the Prince Edward Islands, Sub-Antarctic. Polar Biol 11:129–33.

    Article  Google Scholar 

  • Bakker DCE, Nielsdottir MC, Morris PJ, Venables HJ, Watson AJ. 2007. The island mass effect and biological carbon uptake for the subantarctic Crozet Archipelago. Deep Sea Res Part II 54:2174–90.

    Article  Google Scholar 

  • Balarin MG. 2000. Size-fractionated phytoplankton biomass and primary production in the Southern Ocean. MSc Thesis, Rhodes University.

  • Ballerini T, Hofmann EE, Ainley DG, Daly K, Marrari M, Ribic CA, Smith WO Jr, Steele JH. 2014. Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf. Prog Oceanogr 122:10–29.

    Article  Google Scholar 

  • Beckley LE, Branch GM. 1992. A quantitative scuba-diving survey of the sublittoral macrobenthos at subantarctic Marion Island. Polar Biol 11:553–63.

    Article  Google Scholar 

  • Bergstrom D, Chown SL. 1999. Life at the front: history, ecology and change on southern ocean islands. Trends Ecol Evol 14:472–7.

    Article  PubMed  Google Scholar 

  • Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S. 2013. Climate change and the past, present, and future of biotic interactions. Science 341:499–504.

    Article  CAS  PubMed  Google Scholar 

  • Boden BP. 1988. Observations of the island mass effect in the Prince Edward Archipelago. Polar Biol 9:61–8.

    Article  Google Scholar 

  • Bosman AL, Hockey PAR. 1988. The influence of seabird guano on the biological structure of rocky intertidal communities on islands off the west coast of southern Africa. S Afr J Mar Sci 7:61–8.

    Article  Google Scholar 

  • Branch GM, Attwood CG, Gianakouras D, Branch ML. 1993. Patterns in the benthic communities on the shelf of the sub-Antarctic Prince Edward Islands. Polar Biol 13:23–34.

    Article  Google Scholar 

  • Briggs AA, Young HS, McCauley DJ, Hathaway SA, Dirzo R, Fisher RN. 2012. Effects of spatial subsidies and habitat structure on the foraging ecology and size of geckos. PLoS One 7:e41364. doi:10.1371/journal.pone.0041364.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Britton-Simmons KH, Foley G, Okamoto D. 2009. Spatial subsidy in the subtidal zone: utilization of drift algae by a deep subtidal sea urchin. Aquat Biol 5:233–43.

    Article  Google Scholar 

  • Burger AE, Lindeboom HJ, Williams AJ. 1978. The mineral and energy contributions of guano of selected species of birds to the Marion Island terrestrial ecosystem. S Afr J Antarct Res 8:59–70.

    Google Scholar 

  • Bustamante RH, Branch GM, Eekhout S. 1995. Maintenance of an exceptional intertidal grazer biomass in South Africa: subsidy by subtidal kelps. Ecology 76:2314–29.

    Article  Google Scholar 

  • Christensen V, Walters CJ. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecol Model 172:109–39.

    Article  Google Scholar 

  • Coll M, Palomera I, Tudela S, Sardà F. 2006. Trophic flows, ecosystem structure and fishing impacts in the South Catalan Sea, Northwestern Mediterranean. J Mar Syst 59:63–96.

    Article  Google Scholar 

  • Crawford RJM, Cooper J, Du Toit M, Greyling MD, Hanise B, Holness CL, Keith DG, Nel JL, Petersen SL, Spencer K, Tshingana D, Wolfaard AC. 2003a. Population and breeding of the Gentoo Penguin Pygoscelis papua at Marion Island, 1994/95–2002/03. Afr J Mar Sci 25:463–74.

    Article  Google Scholar 

  • Crawford RJM, Cooper J, Dyer BM, Greyling MD, Klages NTW, Ryan PG, Petersen SL, Underhill LG, Upfold L, Wilkinson W, De Villiers MS, Du Plessis S, Du Toit M, Leshoro TM, Makhado AB, Mason M, Merkle D, Tshingana D, Ward VL, Whittington PA. 2003b. Populations of surface-nesting seabirds at Marion Island, 1994/95-2002/03. Afr J Mar Sci 25:427–40.

    Article  Google Scholar 

  • Dalsgaard J, Pauly D. 1997. Preliminary mass-balance models of Prince William Sound, Alaska, for the pre-spill period, 1980–1989. Fisheries Centre Research Reports 5. 33p.

  • Deacon GER. 1983. Kerguelen, Antarctic and Subantarctic. Deep-Sea Res A 30:77–81.

    Article  Google Scholar 

  • Department of Environmental Affairs (DEA). 2013. Prince Edward Islands declared a Marine Protected Area. https://www.environment.gov.za/?q=content/princeedwardislands_declaredmarineprotectedarea. Accessed 12 April 2013.

  • deYoung B, Werner F, Batchelder H, Carlotti F, Fiksen O, Hofmann EE, Kim S, Yamazaki H, Kishi M. 2010. Dynamics of marine ecosystems: integration through models of biological-physical interactions. Barange M, Field JG, Harris RH, Hofmann E, Perry RI, Werner F, Eds. Global Change and Marine Ecosystems. Oxford: Oxford University Press. pp 89–128.

  • Duncombe Rae CM. 1989a. Data report of the first cruise of the Marion Offshore Ecological study (MOES-1). South African National Science Progress Report 159. 384p.

  • Duncombe Rae CM. 1989b. Physical and chemical marine environment of the Prince Edward Islands (Southern Ocean) during April/May 1987. S Afr J Mar Sci 8:301–11.

    Article  Google Scholar 

  • El-Sayed SZ, Stockwell DA, Reheim HA, Taguchi S, Meyer MA. 1979. On the productivity of the southwestern Indian Ocean. Extrait de la Publication no 44 du CNFRACanpagne MD08/Benthos—Premers resultats, pp 83–110.

  • Elton CS. 1927. Animal ecology. London: Sidwick and Jackson. p 207.

    Google Scholar 

  • Gaichas S, Skaret G, Falk-Petersen J, Link JS, Overholtz W, Megrey BA, Gjosaeter H, Stockhausen WT, Dommasnes A, Friedland KD, Aydin K. 2009. A comparison of community and trophic structure in five marine ecosystems based on energy budgets and system metrics. Prog Oceanogr 81:47–62.

    Article  Google Scholar 

  • Graf G. 1992. Benthic-pelagic coupling: a benthic view. Oceanogr Mar Biol Ann Rev 30:149–90.

    Google Scholar 

  • Gurney LJ. 2013. An ecosystem study of the Prince Edward Archipelago (Southern Ocean). PhD Thesis, University of British Columbia, Vancouver, Canada (available on: http://hdl.handle.net/2429/45694).

  • Gurney LJ, Pakhomov EP, Christensen V. 2014. An ecosystem model of the Prince Edward Island archipelago. Ecol Model 294:117–36.

    Article  Google Scholar 

  • Hargrave BT. 1978. Seasonal changes in oxygen uptake by settled particulate matter and sediments in a marine bay. J Fish Res Board Canada 35:1621–8.

    Article  CAS  Google Scholar 

  • Haxen PG, Grindley JR. 1985. Durvillaea antarctica production in relation to nutrient cycling at Marion Island. Siegfried WR, Condy PR, Laws RM, Eds. Antarctic nutrient cycles and food webs. Proceedings of the 4th SCAR Symposium on Antarctic Biology. Berlin: Springer. pp 637–640.

  • Ismail HE. 1990. Surface nutrients in the vicinity of the Prince Edward Islands during April/May 1989. S Afr J Antarct Res 20:33–6.

    Google Scholar 

  • Kaehler S, Pakhomov EA, Mcquaid CD. 2000. Trophic structure of the marine food web at the Prince Edward Islands (Southern Ocean) determined by δ13C and δ15N analysis. Mar Ecol Prog Ser 208:13–20.

    Article  Google Scholar 

  • Kitchell JF, Magnuson JJ, Neill WH. 1977. Estimation of caloric content for fish biomass. Environ Biol Fishes 2:185–8.

    Google Scholar 

  • le Roux PC, McGeoch MA. 2008. Changes in climate extremes, variability and signature on sub-Antarctic Marion Island. Clim Change 86:309–29.

    Article  Google Scholar 

  • Lindeboom HJ. 1979. Chemical and microbiological aspects of the nitrogen cycle on Marion Island (sub-Antarctic). PhD Thesis, Rijksuniversiteit, Groningen, The Netherlands.

  • Lindeboom HJ. 1984. The nitrogen pathway in a penguin rookery. Ecology 65:269–77.

    Article  CAS  Google Scholar 

  • Loreau M, Holt RD. 2004. Spatial flows and the regulation of ecosystems. Am Nat 163:606–15.

    Article  PubMed  Google Scholar 

  • Lutjeharms JRE. 1985. Location of frontal systems between Africa and Antarctica: some preliminary results. Deep-Sea Res 32:1499–509.

    Article  Google Scholar 

  • Lutjeharms JRE, Ansorge IJ. 2008. Oceanographic setting of the Prince Edward Islands. Chown SL, Froneman PW, Eds. The Prince Edward Islands: land–sea interactions in a changing ecosystem. Stellenbosch: Sun Press. pp 17–38.

  • Marczak LB, Thompson RM, Richardson JS. 2007. Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88:140–8.

    Article  PubMed  Google Scholar 

  • Maron JL, Estes JA, Croll DA, Danner EM, Elmendorf SC, Buckelew SL. 2006. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies. Ecol Monogr 76:3–24.

    Article  Google Scholar 

  • Marquis E, Niquil N, Vézina AF, Petitgas P, Dupuy C. 2011. Influence of planktonic foodweb structure on a system’s capacity to support pelagic production: an inverse analysis approach. ICES J Mar Sci 68:803–12.

    Article  Google Scholar 

  • McQuaid CD, Froneman PW. 2008. Biology in the oceanographic environment. Chown SL, Froneman PW, Eds. The Prince Edward Islands: land–sea interactions in a changing ecosystem. Stellenbosch: Sun Press. pp 97–120.

  • Moku M, Kawaguchi K. 2008. Chemical composition of three dominant myctophid fish, Diaphus theta, Stenobrachius leucopsarus, and S. nannochir, in the subarctic and transition waters of the western North Pacific. J Mar Biol Assoc UK 88:843–6.

    Article  CAS  Google Scholar 

  • Murphy EJ, Hofmann EE. 2012. End-to-end in Southern Ocean ecosystems. Curr Opin Environ Sustain 4:264–71.

    Article  Google Scholar 

  • Murphy EJ, Cavanagh RD, Hofmann EE, Hill SL, Constable AJ, Costa DP, Pinkerton MH, Johnston NM, Trathan PN, Klinck JM, Wolf-Gladrow DA, Daly KL, Maury O, Doney SC. 2012. Developing integrated models of Southern Ocean food webs: including ecological complexity, accounting for uncertainty and the importance of scale. Prog Oceanogr 102:74–92.

    Article  Google Scholar 

  • Pakhomov EA, Chown SL. 2003. The Prince Edward Islands: Southern Ocean oasis. Ocean Yearbook 17. Chicago, USA: University of Chicago Press. pp 348–379.

  • Pakhomov EA, Froneman PW. 1999. The Prince Edward Islands pelagic ecosystem, south Indian Ocean: a review of achievements, 1976–1990. J Mar Syst 18:355–67.

    Article  Google Scholar 

  • Pakhomov EA, Ansorge IJ, Froneman PW. 2000. Variability in the inter-island environment of the Prince Edward Islands (Southern Ocean). Polar Biol 23:593–603.

    Article  Google Scholar 

  • Pakhomov EA, Kaehler S, Perissinotto R. 2009. The Prince Edward Islands’ Life-Support System: relative importance of local and advected sources. Scientific Memoirs of the Kazan State University. Series: Nat Sci 151:104–21.

    Google Scholar 

  • Perissinotto R. 1992. Mesozooplankton size-selectivity and grazing impact on the phytoplankton community of the Prince Edward Archipelago (Southern Ocean). Mar Ecol Prog Ser 79:243–58.

    Article  Google Scholar 

  • Perissinotto R, Duncombe Rae CM. 1990. Occurrence of anti-cyclonic eddies on the Prince Edward plateau (Southern Ocean): effects on phytoplankton productivity and biomass. Deep-Sea Res I 37:777–93.

    Article  Google Scholar 

  • Perissinotto R, Allanson BR, Boden BP. 1990a. Trophic relations within the island seas of the Prince Edward Archipelago, Southern Ocean. Barnes M, Gibson RN, Eds. Trophic Relationships in the Marine Environment. Aberdeen: Aberdeen University Press. pp 296–314.

  • Perissinotto R, Lutjeharms JRE, van Ballegooyen RC. 2000. Biological-physical interactions and pelagic productivity at the Prince Edward Islands, Southern Ocean. J Mar Syst 24:327–41.

    Article  Google Scholar 

  • Perissinotto R, Duncombe Rae CM, Boden BP, Allanson BR. 1990b. Vertical stability as a controlling factor of the marine phytoplankton production at the Prince Edward Archipelago (Southern Ocean). Mar Ecol Prog Ser 60:205–9.

    Article  Google Scholar 

  • Pimm SL. 2002. Food webs. Chicago: The University of Chicago Press. p 219p.

    Google Scholar 

  • Pimm SL, Lawton JH. 1980. Are food webs divided into compartments? J Anim Ecol 49:879–98.

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Ann Rev Ecol Syst 28:289–316.

    Article  Google Scholar 

  • Polis GA, Power ME, Huxel GR, Eds. 2004a. Food webs at the landscape level. Chicago: University of Chicago Press.

    Google Scholar 

  • Polis GA, Sánchez-Piñero F, Stapp PT, Anderson WB, Rose MD. 2004b. Trophic flows from water to land: marine input affects food webs of islands and coastal ecosystems worldwide. Polis GA, Power ME, Huxel GR, Eds. Food webs at the landscape level. Chicago: University of Chicago Press. pp 200–216.

  • Richardson K, Visser AW, Pedersen FBo. 2000. Subsurface phytoplankton blooms fuel pelagic production in the North Sea. J Plankton Res 22:1663–71.

    Article  Google Scholar 

  • Ruzicka JJ, Brodeur RD, Wainwright TC. 2007. Seasonal food web models for the Oregon inner-shelf ecosystem: investigating the role of large jellyfish. CalCOFI Rep 48:106–28.

    Google Scholar 

  • Ruzicka JJ, Steele JH, Ballerini T, Gaichas SK, Ainley DG. 2013. Dividing up the pie: Whales, fish, and humans as competitors. Prog Oceanogr 116:207–19.

    Article  Google Scholar 

  • Ryan PG, Bester MN. 2008. Pelagic predators. Chown SL, Froneman PW, Eds. The Prince Edward Islands: land–sea interactions in a changing ecosystem. Stellenbosch: Sun Press. pp 121–164.

  • Schlacher TA, Strydom S, Connolly RM, Schoeman D. 2013. Donor-control of scavenging food webs at the land-ocean interface. PLoS One 8:e68221. doi:10.1371/journal.pone.0068221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shannon LJ, Moloney CL, Jarre A, Field JG. 2003. Trophic flows in the southern Benguela during the 1980s and 1990s. J Mar Syst 39:83–116.

    Article  Google Scholar 

  • Smith VR. 1978. Animal-plant-soil nutrient relationships on Marion Island (Subantarctic). Oecologia 32:239–53.

    Article  Google Scholar 

  • Smith VR. 2002. Climate change in the sub-Antarctic: an illustration from Marion Island. Clim Change 52:345–57.

    Article  CAS  Google Scholar 

  • Smith VR. 2008. Energy flow and nutrient cycling in the Marion Island terrestrial ecosystem: 30 years on. Polar Record 44:211–26.

    Article  Google Scholar 

  • Smith VR, Froneman PW. 2008. Nutrient dynamics in the vicinity of the Prince Edward Islands. Chown SL, Froneman PW, Eds. The Prince Edward Islands: land–sea interactions in a changing ecosystem. Stellenbosch: Sun Press. p 164–179.

  • Spiller DA, Piovia-Scott J, Wright AN, Yang LH, Takimoto G, Schoener TW, Iwata T. 2010. Marine subsidies have multiple effects on coastal food webs. Ecology 91:1424–34.

    Article  PubMed  Google Scholar 

  • Stapp P, Polis GA. 2003. Marine resources subsidize insular rodent populations in the Gulf of California, Mexico. Oecologia 134:496–504.

    Article  PubMed  Google Scholar 

  • Steele JH. 2009. Assessment of some linear food web methods. J Mar Syst 76:186–94.

    Article  Google Scholar 

  • Steele JH, Ruzicka JJ. 2011. Constructing end-to-end models using ECOPATH data. J Mar Syst 87:227–38.

    Article  Google Scholar 

  • Sterner RW, George NB. 2000. Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology 81:127–40.

    Article  Google Scholar 

  • Summerhayes VS, Elton CS. 1923. Contributions to the ecology of Spitsbergen and Bear Island. J Ecol 11:214–86.

    Article  Google Scholar 

  • Talley DM, Huxel GR, Holyoak M. 2006. Connectivity at the land-water interface. Crooks KR, Sanjayan M, Eds. Connectivity Conservation. UK: Cambridge University Press. pp 97–129.

  • van Ballegooyen RC, Perissinotto R, Ismail A, Boden BR, Lucas M, Allanson BR, Lutjeharms JRE. 1989. Data report of the second cruise of the Marion Offshore Ecological Study (MOES II). CSIR Report EMA-D 8910. 16p.

  • Vander Zanden MJ, Sanzone DM. 2004. Food web subsidies at the land-water ecotone. Polis GA, Power ME, Huxel GR, Eds. Food webs at the landscape level. Chicago, USA: University of Chicago Press. pp 185–188.

  • Vanni MJ, DeAngelis DL, Schindler DE, Huxel GR. 2004. Overview: cross-habitat flux of nutrients and detritus. Polis GA, Power ME, Huxel GR, Eds. Food webs at the landscape level. Chicago, USA: University of Chicago Press. pp 3–11.

  • Wainright SC, Haney JC, Kerr C, Golovkin AN, Flint MV. 1998. Utilization of nitrogen derived from seabird guano by terrestrial and marine plants at St. Paul, Pribilof Islands, Bering Sea, Alaska. Mar Biol 131:63–71.

    Article  CAS  Google Scholar 

  • Watson RA, Nowara GB, Tracey SR, Fulton EA, Bulman CM, Edgar GJ, Barrett NS, Lyle JM, Frusher SD, Buxton CD. 2013. Ecosystem model of Tasmanian waters explores impacts of climate-change induced changes in primary productivity. Ecol Model 264:115–29.

    Article  Google Scholar 

  • Whitehouse MJ, Priddle J, Brandon MA, Swanson C. 1999. A comparison of chlorophyll/nutrient dynamics at two survey sites near South Georgia, and the potential role of planktonic nitrogen recycled by land-based predators. Limnol Oceanogr 44:1498–508.

    Article  CAS  Google Scholar 

  • Witman JD, Patterson MR, Genovese SJ. 2004. Benthic-pelagic linkages in subtidal communities: influence of food subsidy by internal waves. Polis GA, Power ME, Huxel GR, Eds. Food webs at the landscape level. Chicago, USA: University of Chicago Press. pp 133–153.

  • Wootton JT. 1991. Direct and indirect effects of nutrients on intertidal community structure: Variable consequences of seabird guano. J Exp Mar Biol Ecol 151:139–54.

    Article  Google Scholar 

Download references

Acknowledgments

Eugene Murphy is thanked for useful discussion. AMT is supported by the South African National Research Foundation (NRF). JJR is supported by a grant from the USA National Science Foundation (OCE-1259057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Treasure.

Additional information

Author contributions

AMT, CLM and IJA conceived of the study. AMT and JJR performed the research and analyzed the data. JJR and LJG contributed models. AMT and JJR wrote the paper. AMT, JJR, CLM, LJG and IJA edited the manuscript.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treasure, A.M., Ruzicka, J.J., Moloney, C.L. et al. Land–Sea Interactions and Consequences for Sub-Antarctic Marine Food Webs. Ecosystems 18, 752–768 (2015). https://doi.org/10.1007/s10021-015-9860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9860-2

Keywords

Navigation