Skip to main content

Advertisement

Log in

Successional Changes in Carbon Stocks After Logging and Deforestation for Agriculture in Interior Alaska: Implications for Boreal Climate Feedbacks

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The large boreal carbon (C) stocks in Alaska are vulnerable to losses from disturbance, such as clearcut logging and deforestation for agricultural development. Here we investigated impacts of logging in uplands and agricultural deforestation in lowlands on C and nitrogen (N) stocks in Interior Alaska, using chronosequences, and synthesized results from other studies in the boreal region. Two years after logging, ecosystem C stocks in upland forests were reduced by 11 kg m−2 (46% of the original ecosystem C stock), mainly as a consequence of stem removal. Soil C and N stocks increased over the first few years after logging, but returned to pre-harvest levels during the following decades to century. Studies across the boreal region showed that mean initial C loss was four times greater, but long-term C cycling was similar in logged as compared to burned forests. Agricultural development in Alaskan lowlands permanently reduced ecosystem C stocks, reaching losses of 11 kg m−2 (34% of the ecosystem C stock) on non-permafrost soils after several decades and 31 kg m−2 (69%) on permafrost soils over 6 years. These C losses are much more rapid than the 5–6 kg m−2 over 500 years that models project to be lost by warming or warming-plus-wildfire in lowland boreal forests. If economic incentives and climate warming augment boreal land-use change in lowlands because of improved agricultural opportunities and performance, this could magnify warming-induced C loss and amplify climate warming. These impacts can be reduced by conserving permafrost-dominated sites for C storage and focusing agriculture on permafrost-free sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, Pinzon J, Tucker CJ, Fung I. 2005. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc Natl Acad Sci USA 102:10823–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ballard TM. 2000. Impacts of forest management on northern forest soils. For Ecol Manage 133:37–42.

    Article  Google Scholar 

  • Balshi MS, McGuire AD, Zhuang Q, Melillo J, Kicklighter DW, Kasischke E, Wirth C, Flannigan M, Harden J, Clein JS, Burnside TJ, McAllister J, Kurz WA, Apps M, Shvidenko A. 2007. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J Geophys Res 112:G02029.

  • Barber VA, Juday GP, Finney BP. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperatue-induced drought stress. Nature 405:668–72.

    Article  CAS  PubMed  Google Scholar 

  • Beck PSA, Juday GP, Alix C, Barber VA, Winslow SE, Sousa EE, Heiser P, Herrigs JD, Goetz SJ. 2011. Changes in forest productivity across Alaska consistent with biome shift. Ecol Lett 14:373–9.

    Article  PubMed  Google Scholar 

  • Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–9.

    Article  CAS  PubMed  Google Scholar 

  • Bond-Lamberty B, Peckham SD, Ahl DE, Gower ST. 2007. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450:89–92.

    Article  CAS  PubMed  Google Scholar 

  • Ellert BH, Bettany JR. 1995. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–38.

    Article  CAS  Google Scholar 

  • Euskirchen ES, McGuire AD, Chapin FSIII, Rupp TS. 2010. The changing effects of Alaska’s boreal forests on the climate system. Can J For Res 40:1336–46.

    Article  Google Scholar 

  • Finér L, Mannerkoski H, Piirainen S, Starr M. 2003. Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes assocated with clear-cutting. For Ecol Manage 174:51–3.

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–92.

    Article  CAS  PubMed  Google Scholar 

  • Grant RF, Barr AG, Black TA, Gaumont-Guay D, Iwashita H, Kidson J, McCaughey H, Morgenstern K, Murayama S, Nesic Z, Saigusa N, Shashkov A, Zha T. 2007. Net ecosystem productivity of boreal jack pine stands regenerating from clearcutting under current and future climates. Glob Change Biol 13:1423–40.

    Article  Google Scholar 

  • Grünzweig JM, Gelfand I, Fried Y, Yakir D. 2007. Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland. Biogeosciences 4:891–904.

    Article  Google Scholar 

  • Grünzweig JM, Sparrow SD, Chapin FSIII. 2003. Impact of forest conversion to agriculture on carbon and nitrogen mineralization in subarctic Alaska. Biogeochemistry 64:271–96.

    Article  Google Scholar 

  • Grünzweig JM, Sparrow SD, Yakir D, Chapin FSIII. 2004. Impact of agricultural land-use change on carbon storage in boreal Alaska. Glob Change Biol 10:452–72.

    Article  Google Scholar 

  • Hayes DJ, McGuire AD, Kicklighter DW, Burnside TJ, Melillo JM. 2011. The effects of land cover and land use change on the contemporary carbon balance of the Arctic and boreal terrestrial ecosystems of Northern Eurasia. In: Gutman M, Reissell A, Eds. Eurasian Arctic land cover and land use in a changing climate. Dordrecht: Springer Science.

  • Howard EA, Gower ST, Foley JA, Kucharik CJ. 2004. Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada. Glob Change Biol 10:1267–84.

    Article  Google Scholar 

  • Jerabkova L, Prescott CE, Titus BD, Hope GD, Walters MB. 2011. A meta-analysis of the effects of clearcut and variable-retention harvesting on soil nitrogen fluxes in boreal and temperate forests. Can J For Res 41:1852–70.

    Article  CAS  Google Scholar 

  • Johnson KD, Harden JW, McGuire AD, Bliss NB, Bockheim JG, Clark M, Nettleton-Hollingworth T, Jorgenson MT, Kane ES, Mack MC, O’Donnell J, Ping C-L, Schuur EAG, Turetsky MR, Valentine DW. 2011. Soil carbon distribution in Alaska in relation to soil-forming factors. Geoderma 167–168:71–84.

    Article  Google Scholar 

  • Karhu K, Wall A, Vanhala P, Liski J, Esala MJ, Regina K. 2011. Effects of afforestation and deforestation on boreal soil carbon stocks—Comparison of measured C stocks with Yasso07 model results. Geoderma 164:33–45.

    Article  CAS  Google Scholar 

  • Kasischke ES, Hyer EJ, Novelli PC, Bruhwiler LP, French NHF, Sukhinin AI, Hewson JH, Stocks BJ. 2005. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide. Glob Biogeochem Cycles 19:GB2012.

  • Klingensmith KM, Van Cleve K. 1993. Denitrification and nitrogen fixation in floodplain successional soils along the Tanana River, interior Alaska. Can J For Res 23:956–63.

    Article  CAS  Google Scholar 

  • Kreutzweiser DP, Hazlett PW, Gunn JM. 2008. Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: a review. Environ Rev 16:157–79.

    Article  CAS  Google Scholar 

  • Kurz WA, Apps MJ. 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–47.

    Article  Google Scholar 

  • Lee J, Hopmans JW, Rolston DE, Baer SG, Six J. 2009. Determining soil carbon stock changes: simple bulk density corrections fail. Agric Ecosyst Environ 134:251–6.

    Article  CAS  Google Scholar 

  • Lee J, Morrison IK, Leblanc J-D, Dumas MT, Cameron DA. 2002. Carbon sequestration in trees and regrowth vegetation as affected by clearcut and partial cut harvesting in a second-growth boreal mixedwood. For Ecol Manage 169:83–101.

    Article  Google Scholar 

  • Ma Z, Peng C, Zhu Q, Chen H, Yu G, Li W, Zhou X, Wang W, Zhang W. 2012. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc Natl Acad Sci USA 109:2423–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mäkiranta P, Laiho R, Penttilä T, Minkkinen K. 2012. The impact of logging residue on soil GHG fluxes in a drained peatland forest. Soil Biol Biochem 48:1–9.

    Article  Google Scholar 

  • Martin JL, Gower ST, Plaut J, Holmes B. 2005. Carbon pools in a boreal mixedwood logging chronosequence. Glob Change Biol 11:1883–94.

    Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ. 1997. Agricultural intensification and ecosystem properties. Science 277:504–9.

    Article  CAS  PubMed  Google Scholar 

  • McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N. 2009. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–55.

    Article  Google Scholar 

  • McGuire AD, Ruess RW, Lloyd A, Yarie J, Clein JS, Juday GP. 2010. Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives. Can J For Res 40:1197–209.

    Article  Google Scholar 

  • Moroni MT, Shaw CH, Otahal P. 2010. Forest carbon stocks in Newfoundland boreal forests of harvest and natural disturbance origin I: field study. Can J For Res 40:2135–45.

    Article  CAS  Google Scholar 

  • O’Donnell JA, Harden JW, McGuire AD, Kanevskiy MZ, Jorgenson MT, Xu X. 2011a. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Glob Change Biol 17:1461–74.

    Article  Google Scholar 

  • O’Donnell JA, Harden JW, McGuire AD, Romanovsky VE. 2011b. Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem. Biogeosciences 8:1367–82.

    Article  Google Scholar 

  • Palviainen M et al. 2005. Changes in the above- and below-ground biomass and nutrient pools of ground vegetation after clear-cutting of a mixed boreal forest. Plant Soil 275:157–67.

    Article  CAS  Google Scholar 

  • Palviainen M, Finér L, Kurka A-M, Mannerkoski H, Piirainen S, Starr M. 2004. Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant Soil 263:53–67.

    Article  CAS  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton RA, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–93.

    Article  CAS  PubMed  Google Scholar 

  • Piene H, Van Cleve K. 1978. Weight loss of litter and cellulose bags in a thinned white spruce forest in interior Alaska. Can J For Res 8:42–6.

    Article  CAS  Google Scholar 

  • Ping CL, Boone RD, Clark MH, Packee EC, Swanson DK. 2006. State factor control of soil formation in Interior Alaska. In: Chapin FS III, Oswood MW, Van Cleve K Eds. Alaska’s changing boreal forest. New York: Oxford University Press. p 21–38.

  • Ping CL, Michaelson GJ, Kane ES, Packee EC, Stiles CA, Swanson DK, Zaman ND. 2010. Carbon stores and biogeochemical properties of soils under black spruce forest, Alaska. Soil Sci Soc Am J 74:969–78.

    Article  CAS  Google Scholar 

  • Rasmussen P, Goulding K, Brown J, Grace P, Janzen H, Körschens M. 1998. Long-term agroecosystem experiments: assessing agricultural sustainability and global change. Science 282:893–6.

    Article  CAS  PubMed  Google Scholar 

  • Schuur EAG et al. 2008. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 58:701–14.

    Article  Google Scholar 

  • Soil Classification Working Group. 1998. The Canadian system of soil classification. Ottawa, Canada: NRC Research Press.

    Google Scholar 

  • Soil Survey Staff. 1998. Keys to soil taxonomy. Washington, DC: USDA Natural Resource Conservation Service, US Gov. Print. 326 pp

    Google Scholar 

  • Tan X, Chang SX. 2007. Soil compaction and forest litter amendment affect carbon and net nitrogen mineralization in a boreal forest soil. Soil Tillage Res 93:77–86.

    Article  Google Scholar 

  • Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasischke ES. 2011. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci 4:27–31.

    Article  CAS  Google Scholar 

  • Viereck LA, Dyrness CT, Van Cleve K, Foote MJ. 1983. Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Can J For Res 13:703–20.

    Article  Google Scholar 

  • Vogel J, Gower S. 1998. Carbon and nitrogen dynamics of boreal jack pine stands with and without a green alder understory. Ecosystems 1:386–400.

    Article  CAS  Google Scholar 

  • Yarie J. 1997. Nitrogen productivity of Alaskan tree species at an individual tree and landscape level. Ecology 78:2351–8.

    Article  Google Scholar 

  • Yarie J, Van Cleve K. 1983. Biomass and productivity of white spruce stands in interior Alaska. Can J For Res 13:767–72.

    Article  Google Scholar 

  • Yli-Halla M, Mokma DL. 2001. Soils in an agricultural landscape of Jokioinen, south-western Finland. Agric Food Sci Finland 10:33–43.

    Google Scholar 

  • Yuan F-M, Yi S-H, McGuire AD, Johnson KD, Liang J, Harden JW, Kasischke ES, Kurz WA. 2012. Assessment of boreal forest historical C dynamics in the Yukon River Basin: relative roles of warming and fire regime change. Ecol Appl 22:2091–109.

    Article  CAS  PubMed  Google Scholar 

  • Zimov S, Schuur EAG, Chapin FSIII. 2006. Permafrost and the global carbon budget. Science 312:1612–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank David Maxell of the Division of Forestry, Department of Natural Resources, State of Alaska for help with clearcut site selection; Dennis Mulligan, Natural Resources Conservation Service, USDA, Fairbanks AK for soil classification; Glenn Juday for assistance with the old logging sites, Steve Sparrow for supervision of the agricultural project, and Kristiina Regina for providing unpublished data. We further acknowledge Darleen Masiak, Lola Oliver, Dan Uliassi, Jonathan Henkelman, and Orly Grünzweig for technical help, and Daniel Gliksman for statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Grünzweig.

Additional information

Author Contributions

All authors conceived and designed the experiments. JMG performed the experiments; DWV and FSC supervised them. JMG analyzed the data and wrote the manuscript; DWV and FSC contributed to the writing process and provided editorial advice.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grünzweig, J.M., Valentine, D.W. & Chapin, F.S. Successional Changes in Carbon Stocks After Logging and Deforestation for Agriculture in Interior Alaska: Implications for Boreal Climate Feedbacks. Ecosystems 18, 132–145 (2015). https://doi.org/10.1007/s10021-014-9817-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9817-x

Keywords

Navigation