Skip to main content
Log in

Assessing Nitrogen-Saturation in a Seasonally Dry Chaparral Watershed: Limitations of Traditional Indicators of N-Saturation

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

To evaluate nitrogen (N) saturation in xeric environments, we measured hydrologic N losses, soil N pools, and microbial processes, and developed an N-budget for a chaparral catchment (Sierra Nevada, California) exposed to atmospheric N inputs of approximately 8.5 kg N ha−1 y−1. Dual-isotopic techniques were used to trace the sources and processes controlling nitrate (NO3 ) losses. The majority of N inputs occurred as ammonium. At the onset of the wet season (November to April), we observed elevated streamwater NO3 concentrations (up to 520 µmol l−1), concomitant with the period of highest gaseous N-loss (up to 500 ng N m−2 s−1) and suggesting N-saturation. Stream NO3 δ15N and δ18O and soil N measurements indicate that nitrification controlled NO3 losses and that less than 1% of the loss was of atmospheric origin. During the late wet season, stream NO3 concentrations decreased (to <2 µmol l−1) as did gaseous N emissions, together suggesting conditions no longer indicative of N-saturation. We propose that chaparral catchments are temporarily N-saturated at ≤8.5 kg N ha−1 y−1, but that N-saturation may be difficult to reach in ecosystems that inherently leak N, thereby confounding the application of N-saturation indicators and annual N-budgets. We propose that activation of N sinks during the typically rainy winter growing season should be incorporated into the assessment of ecosystem response to N deposition. Specifically, the N-saturation status of chaparral may be better assessed by how rapidly catchments transition from N-loss to N-retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM. 1989. Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–86.

    Article  Google Scholar 

  • Aber JD, McDowell W, Nadelhoffer KJ, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I. 1998. Nitrogen saturation in temperate forest ecosystems: hypothesis revisited. Bioscience 48:921–34.

    Article  Google Scholar 

  • Allen EB, Padgett PE, Bytnerowicz A, Minnich R. 1998. Nitrogen deposition effects on coastal sage vegetation of southern California. In: Proceedings of the international symposium on air pollution and climate change effects on forest ecosystems, Riverside, CA February 5–9, 1996. USDA Forest Service, Pacific Southwest Research Station, PSW-GTR-166. pp. 131–140.

  • Allen EB, Rao LE, Steers RJ, Bytnerowicz A, Fenn ME. 2009. Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park. In: Webb RH, Fenstermaker LF, Heaton JS, Hughson DL, McDonald EV, Miller DM, Eds. The Mojave Desert: ecosystem processes and sustainability. Las Vegas, NV: University of Nevada Press. p 78–100.

    Google Scholar 

  • Allen EB, Steers RJ, Dickens SJ. 2011. Impacts of fire and invasive species on desert soil ecology. Rangel Ecol Manag 64:450–62.

    Article  Google Scholar 

  • Anderson IC, Levine JS. 1987. Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide. J Geophys Res 92:965–76.

    Article  CAS  Google Scholar 

  • Austin AT, Vitousek PM. 1998. Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113:519–29.

    Article  Google Scholar 

  • Belser LW, Mays EL. 1980. Specific-inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Appl Environ Microbiol 39:505–10.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bernal S, Butturini A, Sabater F. 2005. Seasonal variations of dissolved nitrogen and DOC:DON ratios in an intermittent Mediterranean stream. Biogeochemistry 75:351–72.

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985. Chloroform fumigation and the release of soil-nitrogen—a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–42.

    Article  CAS  Google Scholar 

  • Brookshire ENJ, Valett HM, Thomas SA, Webster JR. 2007. Atmospheric N deposition increases organic N loss from temperate forests. Ecosystems 10:252–62.

    Article  CAS  Google Scholar 

  • Burns DA, Kendall C. 2002. Analysis of δ15N and δ18O to differentiate NO3 sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resour Res 38:9-1–-11.

    Google Scholar 

  • Burns DA, Murdoch PS. 2005. Effects of a clearcut on the net rates of nitrification and N mineralization in a northern hardwood forest, Catskill Mountains, New York, USA. Biogeochemistry 72:123–46.

    Article  CAS  Google Scholar 

  • Burns DA, Boyer EW, Elliott EM, Kendall C. 2009. Sources and transformations of nitrate from streams draining varying land uses: evidence from dual isotope analysis. J Environ Qual 38:1149–59.

    Article  PubMed  CAS  Google Scholar 

  • Bytnerowicz A, Fenn M. 1996. Nitrogen deposition in California forests: a review. Environ Pollut 92:127–46.

    Article  PubMed  CAS  Google Scholar 

  • Bytnerowicz A, Tausz M, Alonso R, Jones D, Johnson R, Grulke N. 2002. Summer-time distribution of air pollutants in Sequoia National Park, California. Environ Pollut 118:187–203.

    Article  PubMed  CAS  Google Scholar 

  • Cisneros R, Bytnerowicz A, Schweizer D, Zhong SR, Traina S, Bennett DH. 2010. Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California. Environ Pollut 158:3261–71.

    Article  PubMed  CAS  Google Scholar 

  • Clean Air Status and Trends Network (CASTNET). 2013. Sequoia and Kings Canyon National Parks-Lookout Point (SEK402) station. Washington, DC: United States Environmental Protection Agency. http://epa.gov/castnet/javaweb/index.html. Accessed 20 June 2014.

  • Cohn TA. 1995. Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers. Rev Geophys 33:1117–23.

    Article  Google Scholar 

  • Creed IF, Band LE. 1998a. Exploring functional similarity in the export of nitrate-N from forested catchments: a mechanistic modeling approach. Water Resour Res 34:3079–93.

    Article  CAS  Google Scholar 

  • Creed IF, Band LE. 1998b. Export of nitrogen from catchments within a temperate forest: evidence for a unifying mechanism regulated by variable source area dynamics. Water Resour Res 34:3105–20.

    Article  CAS  Google Scholar 

  • Curtis CJ, Evans CD, Goodale CL, Heaton THE. 2011. What have stable isotope studies revealed about the nature and mechanisms of N saturation and nitrate leaching from semi-natural catchments? Ecosystems 14:1021–37.

    Article  CAS  Google Scholar 

  • DeBano LF, Eberlein GE, Dunn PH. 1979. Effects of burning on chaparral soils: I. Soil nitrogen. Soil Sci Soc Am J 43:504–9.

    Article  CAS  Google Scholar 

  • DiStefano JF, Gholz JL. 1986. A proposed use of ion exchange resin to measure nitrogen mineralization and nitrification in intact soil cores. Commun Soil Plant Anal 17:989–98.

    Article  CAS  Google Scholar 

  • Doyle A, Weintraub MN, Schimel JP. 2004. Persulfate digestion and simultaneous colorimetric analysis of carbon and nitrogen in soil extracts. Soil Sci Soc Am J 68:669–76.

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Graham RC, Allen EB, Allen MF. 2001. Reconstruction of the historical changes in mycorrhizal fungal communities under anthropogenic nitrogen deposition. Proc R Soc Lond B 268:2479–84.

    Article  CAS  Google Scholar 

  • Fang YT, Zhu WX, Gundersen P, Mo JM, Zhou GY, Yoh M. 2009. Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China. Ecosystems 12:33–45.

    Article  CAS  Google Scholar 

  • Fenn ME, Poth MA. 1999. Temporal and spatial trends in streamwater nitrate concentrations in the San Bernardino Mountains, southern California. J Environ Qual 28:822–36.

    Article  CAS  Google Scholar 

  • Fenn ME, Poth MA. 2004. Monitoring nitrogen deposition in throughfall using ion exchange resin columns: a field test in the San Bernardino Mountains. J Environ Qual 33:2007–14.

    Article  PubMed  CAS  Google Scholar 

  • Fenn ME, Poth MA, Dunn PH, Barro SC. 1993. Microbial N and biomass, respiration and N-mineralization in soils beneath two chaparral species along a fire-induced age gradient. Soil Biol Biochem 25:457–66.

    Article  Google Scholar 

  • Fenn ME, Poth MA, Johnson DW. 1996. Evidence for nitrogen saturation in the San Bernardino Mountains in southern California. For Ecol Manag 82:211–30.

    Article  Google Scholar 

  • Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DE, Stottlemyer R. 1998. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol Appl 8:706–33.

    Article  Google Scholar 

  • Fenn ME, Jovan S, Yuan F, Geiser L, Meixner T, Gimeno BS. 2008. Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environ Pollut 155:492–511.

    Article  PubMed  CAS  Google Scholar 

  • Fenn ME, Sickman JO, Bytnerowicz A, Clow DW, Molotoch NP, Plein JE, Tonnesen GS, Weathers KC, Padgett PE, Campbell DH. 2009. Methods for measuring atmospheric nitrogen deposition inputs in arid and montane ecosystems of western North America. In: Legge AH, Ed. Developments in environmental science, Vol. 9. Air Quality and Ecological Impacts: Relating Sources to Effects. Amsterdam: Elsevier. p 179–228.

    Google Scholar 

  • Fenn ME, Allen EB, Geiser LH. 2011. Mediterranean California. In: Pardo LH, Robin-Abbott MJ, Driscoll CT, Eds. Assessment of the nitrogen deposition effects and empirical critical loads of nitrogen for ecoregions of the United States. Newton Square, PA: U.S. Forest Service. p 143–69.

    Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ. 2003. The nitrogen cascade. Bioscience 53:341–56.

    Article  Google Scholar 

  • Garcia C, Hernandez T, Costa F. 1994. Microbial activity in soils under Mediterranean environmental conditions. Soil Biol Biochem 26:1185–91.

    Article  CAS  Google Scholar 

  • Gelfand I, Yakir D. 2008. Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest. Soil Biol Biochem 40:415–24.

    Article  CAS  Google Scholar 

  • Gelfand I, Feig G, Meixner FX, Yakir D. 2009. Afforestation of semi-arid shrubland reduces biogenic NO emission from soil. Soil Biol Biochem 41:1561–70.

    Article  CAS  Google Scholar 

  • Goodale CL, Aber JD, McDowell WH. 2000. The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems 3:433–50.

    Article  Google Scholar 

  • Grosjean D, Bytnerowicz A. 1993. Nitrogenous air pollutants at a southern California mountain forest smog receptor site. Atmos Environ 27A:483–92.

    Article  CAS  Google Scholar 

  • Grulke NE, Dobrowolski W, Mingus P, Fenn ME. 2005. California black oak response to nitrogen amendment at a high O3, nitrogen-saturated site. Environ Pollut 137:536–45.

    Article  PubMed  CAS  Google Scholar 

  • Harms TK, Grimm NB. 2012. Responses of trace gases to hydrologic pulses in desert floodplains. J Geophys Res Biogeosci 117:G01035. doi:10.1029/2011jg001775.

    Article  Google Scholar 

  • Hedin LO, Armesto JJ, Johnson AH. 1995. Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 76:493–509.

    Article  Google Scholar 

  • Homyak PM. 2012. Nitrogen and phosphorus biogeochemistry of watersheds along the western slope of the Sierra Nevada. PhD dissertation, University of California, Riverside.

  • Homyak PM, Sickman JO. 2014. Influence of soil moisture on the seasonality of nitric oxide emissions from chaparral soils, Sierra Nevada, California, USA. J Arid Environ 103:46–52.

    Article  Google Scholar 

  • Homyak PM, Yanai RD, Burns DA, Briggs RD, Germain RH. 2008. Nitrogen immobilization by wood-chip application: protecting water quality in a northern hardwood forest. For Ecol Manag 255:2589–601.

    Article  Google Scholar 

  • Huntington GL, Akeson MA. 1987. Soil resource inventory of Sequoia National Park Central Part. Order no. 8005-2-0002. Washington, DC: US Department of Interior National Park Service.

  • Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG. 2004. Convergence across biomes to a common rain-use efficiency. Nature 429:651–4.

    Article  PubMed  CAS  Google Scholar 

  • Isobe K, Koba K, Suwa Y, Ikutani J, Kuroiwa M, Fang YT, Yoh M, Mo JM, Otsuka S, Senoo K. 2012. Nitrite transformations in an N-saturated forest soil. Soil Biol Biochem 52:61–3.

    Article  CAS  Google Scholar 

  • James JJ, Richards JH. 2005. Plant N capture from pulses: effects of pulse size, growth rate, and other soil resources. Oecologia 145:113–22.

    Article  PubMed  CAS  Google Scholar 

  • James JJ, Richards JH. 2006. Plant nitrogen capture in pulse-driven systems: interactions between root responses and soil processes. J Ecol 94:765–77.

    Article  CAS  Google Scholar 

  • Judd KE, Likens GE, Groffman PM. 2007. High nitrate retention during winter in soils of the hubbard brook experimental forest. Ecosystems 10:217–25.

    Article  CAS  Google Scholar 

  • Keeley JE, Davis FW. 2007. Chaparral. In: Barbour MJ, Keeler-Wolf T, Schoenherr AA, Eds. Terrestrial vegetation of California. Berkeley, CA: University of California Press. p 339–66.

    Chapter  Google Scholar 

  • Kummerow J, Alexander JV, Neel JW, Fishbeck K. 1978. Symbiotic nitrogen fixation in Ceanothus roots. Am J Bot 65:63–9.

    Article  CAS  Google Scholar 

  • Li XY, Meixner T, Sickman JO, Miller AE, Schimel JP, Melack JM. 2006. Decadal-scale dynamics of water, carbon and nitrogen in a California chaparral ecosystem: DAYCENT modeling results. Biogeochemistry 77:217–45.

    Article  CAS  Google Scholar 

  • Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS. 1970. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Book watershed-ecosystem. Ecol Monogr 40:23–47.

    Article  Google Scholar 

  • Lovett GM, Goodale CL. 2011. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an Oak Forest. Ecosystems 14:615–31.

    Article  CAS  Google Scholar 

  • Lovett GM, Lindberg SE. 1993. Atmospheric deposition and canopy interactions of nitrogen in forests. Can J For Res 23:1603–16.

    Article  CAS  Google Scholar 

  • Lovett GM, Weathers KC, Sobczak WV. 2000. Nitrogen saturation and retention in forested watersheds of the Catskill Mountains, New York. Ecol Appl 10:73–84.

    Article  Google Scholar 

  • McCalley CK, Sparks JP. 2009. Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326:837–40.

    Article  PubMed  CAS  Google Scholar 

  • McDowell WH, Magill AH, Aitkenhead-Peterson JA, Aber JD, Merriam JL, Kaushal SS. 2004. Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. For Ecol Manag 196:29–41.

    Article  Google Scholar 

  • Meixner T, Fenn M. 2004. Biogeochemical budgets in a Mediterranean catchment with high rates of atmospheric N deposition—importance of scale and temporal asynchrony. Biogeochemistry 70:331–56.

    Article  CAS  Google Scholar 

  • Meixner T, Fenn ME, Wohlgemuth P, Oxford M, Riggan P. 2006. N saturation symptoms in chaparral catchments are not reversed by prescribed fire. Environ Sci Technol 40:2887–94.

    Article  PubMed  CAS  Google Scholar 

  • Michalski G, Meixner T, Fenn M, Hernandez L, Sirulnik A, Allen E, Thiemens M. 2004. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using Δ17O. Environ Sci Technol 38:2175–81.

    Article  PubMed  CAS  Google Scholar 

  • Miller AE, Schimel JP, Meixner T, Sickman JO, Melack JM. 2005. Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol Biochem 37:2195–204.

    Article  CAS  Google Scholar 

  • Minnich RA, Dezzani RJ. 1998. Historical decline of coastal sage scrub in the Riverside-Perris Plain, California. West Birds 29:366–91.

    Google Scholar 

  • Mooney HA, Rundel PW. 1979. Nutrient relations of the evergreen shrub, Adenostoma fasciculatum, in the California chaparral. Bot Gaz 140:109–13.

    Article  CAS  Google Scholar 

  • National Atmospheric Deposition Program/National Trends Network (NADP). 2010. Inorganic nitrogen wet deposition from nitrate and ammonium 2010. http://nadp.sws.uiuc.edu/maplib/pdf/2010/TotalN_10.pdf. Accessed 20 June 2014.

  • Navarro-Garcia F, Casermeiro MA, Schimel JP. 2012. When structure means conservation: effect of aggregate structure in controlling microbial responses to rewetting events. Soil Biol Biochem 44:1–8.

    Article  CAS  Google Scholar 

  • NPS. 2001. National Park Service gaseous air pollutant monitoring network annual data summary. Sequoia and Kings Canyon National Parks: Lookout Point. Lakewood, CO: Air Resources Division Research and Monitoring Branch.

    Google Scholar 

  • Ochoa-Hueso R, Allen EB, Branquinho C, Cruz C, Dias T, Fenn ME, Manrique E, Perez-Corona ME, Sheppard LJ, Stock WD. 2011. Nitrogen deposition effects on Mediterranean-type ecosystems: an ecological assessment. Environ Pollut 159:2265–79.

    Article  PubMed  CAS  Google Scholar 

  • Padgett PE, Allen EB, Bytnerowicz A, Minich RA. 1999. Changes in soil inorganic nitrogen as related to atmospheric nitrogenous pollutants in southern California. Atmos Environ 33:769–81.

    Article  CAS  Google Scholar 

  • Parker SS, Schimel JP. 2011. Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland. Appl Soil Ecol 48:185–92.

    Article  Google Scholar 

  • Perakis SS, Hedin LO. 2002. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415:416–19.

    Article  PubMed  Google Scholar 

  • Perakis SS, Sinkhorn ER. 2011. Biogeochemistry of a temperate forest nitrogen gradient. Ecology 92:1481–91.

    Article  PubMed  Google Scholar 

  • Rao LE, Allen EB, Meixner T. 2010. Risk-based determination of critical nitrogen deposition loads for fire spread in southern California deserts. Ecol Appl 20:1320–35.

    Article  PubMed  Google Scholar 

  • Riggan PJ, Lockwood RN, Lopez EN. 1985. Deposition and processing of airborne nitrogen pollutants in Mediterranean-type ecosystems of southern-California. Environ Sci Technol 19:781–9.

    Article  PubMed  CAS  Google Scholar 

  • Rundel PW, Parsons DJ. 1979. Structural changes in chamise (Adenostoma fasciculatum) along a fire-induced age gradient. J Range Manag 32:462–6.

    Article  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–94.

    Article  PubMed  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Bohlke JK. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–53.

    Article  PubMed  CAS  Google Scholar 

  • Sleutel S, Vandenbruwane J, De Schrijver A, Wuyts K, Moeskops B, Verheyen K, De Neve S. 2009. Patterns of dissolved organic carbon and nitrogen fluxes in deciduous and coniferous forests under historic high nitrogen deposition. Biogeosciences 6:2743–58.

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf RJ. 1981. Biometry: the principles and practice of statistics in biological research. New York: W.H. Freeman.

    Google Scholar 

  • Stark JM, Firestone MK. 1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61:218–21.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stoddard JL. 1994. Long-term changes in watershed retention of nitrogen. Its causes and aquatic consequences. In: Baker LA, Ed. Environmental chemistry of lakes and reservoirs. Washington, DC: American Chemical Society. p 223–84.

    Chapter  Google Scholar 

  • Swarowsky A, Dahlgren RA, O’Geen AT. 2012. Linking subsurface lateral flowpath activity with streamflow characteristics in a semiarid headwater catchment. Soil Sci Soc Am J 76:532–47.

    Article  CAS  Google Scholar 

  • Talluto MV, Suding KN. 2008. Historical change in coastal sage scrub in southern California, USA in relation to fire frequency and air pollution. Landscape Ecol 23:803–15.

    Article  Google Scholar 

  • Taylor PG, Townsend AR. 2010. Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature 464:1178–81.

    Article  PubMed  CAS  Google Scholar 

  • Templer PH, Weathers KC. 2011. Use of mixed ion exchange resin and the denitrifier method to determine isotopic values of nitrate in atmospheric deposition and canopy throughfall. Atmos Environ 45:2017–20.

    Article  CAS  Google Scholar 

  • Tessier L, Gregorich EG, Topp E. 1998. Spatial variability of soil microbial biomass measured by the fumigation extraction method, and K-EC as affected by depth and manure application. Soil Biol Biochem 30:1369–77.

    Article  CAS  Google Scholar 

  • Thorn KA, Mikita MA. 2000. Nitrite fixation by humic substances: nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification. Soil Sci Soc Am J 64:568–82.

    Article  CAS  Google Scholar 

  • Valderrama JC. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem 10:109–22.

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–7.

    Article  CAS  Google Scholar 

  • Vitousek PM, Field CB. 2001. Input/output balances and nitrogen limitation in terrestrial ecosystems. In: Schulze ED, Heimann M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D, Eds. Global biogeochemical cycles in the climate system. New York: Academic Press. p 217–25.

    Chapter  Google Scholar 

  • Vourlitis GL. 2012. Aboveground net primary production response of semi-arid shrublands to chronic experimental dry-season N input. Ecosphere 3:22.

    Article  Google Scholar 

  • Vourlitis GL, Fernandez JS. 2012. Changes in the soil, litter, and vegetation nitrogen and carbon concentrations of semiarid shrublands in response to chronic dry season nitrogen input. J Arid Environ 82:115–22.

    Article  Google Scholar 

  • Vourlitis GL, Zorba G. 2007. Nitrogen and carbon mineralization of semi-arid shrubland soil exposed to long-term atmospheric nitrogen deposition. Biol Fertil Soils 43:611–15.

    Article  CAS  Google Scholar 

  • Vourlitis GL, Pasquini S, Zorba G. 2007a. Plant and soil N response of southern californian semi-arid shrublands after 1 year of experimental N deposition. Ecosystems 10:263–79.

    Article  CAS  Google Scholar 

  • Vourlitis GL, Zorba G, Pasquini SC, Mustard R. 2007b. Chronic nitrogen deposition enhances nitrogen mineralization potential of semiarid shrubland soils. Soil Sci Soc Am J 71:836–42.

    Article  CAS  Google Scholar 

  • Vourlitis GL, Pasquini SC, Mustard R. 2009. Effects of dry-season N input on the productivity and N storage of Mediterranean-type shrublands. Ecosystems 12:473–88.

    Article  CAS  Google Scholar 

  • Wan SQ, Hui DF, Luo YQ. 2001. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecol Appl 11:1349–65.

    Article  Google Scholar 

  • Wood YA, Fenn M, Meixner T, Shouse PJ, Breiner J, Allen E, Wu LS. 2007. Smog nitrogen and the rapid acidification of forest soil, San Bernardino Mountains, southern California. Sci World J 7:175–80.

    Article  CAS  Google Scholar 

  • Xiang SR, Doyle A, Holden PA, Schimel JP. 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Park Service and Annie Esperanza for facilitating access to the study sites and for other logistical support. We are indebted to Kevin Skeen, Delores Lucero, Jennifer Quach, and Amanda James for help in the field and laboratory and thank Gary Lovett and three anonymous reviewers for their insightful comments. This research was funded by the National Science Foundation (DEB-0089839, DEB-0614207, and DBI-1202894 post-doctoral research award) and fellowship support from a Graduate Mentorship award at UCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Homyak.

Additional information

Author contributions

PMH wrote the paper, analyzed data, collected and processed samples; JOS conceived the study, obtained funding, and collected and processed samples; AEM led field work and collected and processed samples; JMM conceived the study and obtained funding; TM conceived the study, obtained funding, and collected and processed samples; JPS conceived the study and obtained funding. All authors reviewed and edited the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homyak, P.M., Sickman, J.O., Miller, A.E. et al. Assessing Nitrogen-Saturation in a Seasonally Dry Chaparral Watershed: Limitations of Traditional Indicators of N-Saturation. Ecosystems 17, 1286–1305 (2014). https://doi.org/10.1007/s10021-014-9792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9792-2

Keywords

Navigation