Skip to main content

Advertisement

Log in

Effects of Animal Husbandry on Secondary Production and Trophic Efficiency at a Regional Scale

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Agricultural systems are expected to have higher net secondary production (NSP) than natural systems as a result of higher trophic efficiency and lower interannual variability. These differences, however, have not been quantified across regional gradients. We compiled a dataset of herbivore biomass, consumption, NSP, annual precipitation, and aboveground net primary production (ANPP) for extensive livestock farms across a wide precipitation gradient in Argentina. We compared these data with worldwide published studies of natural systems. In a double-logarithmic scale, NSP of agricultural systems increased with ANPP from semiarid to subhumid systems and decreased from subhumid to humid systems, a response that contrasted with the linear positive increase of natural systems. Compared to natural systems dominated by homeotherms, E troph (NSP:ANPP) in agricultural systems in semiarid areas was 8 times higher, due to a 2 times higher E consump (Consumption:ANPP) and a 4 times higher E prod (NSP:Consumption). In subhumid areas, E troph was 46 times higher, due to a 13.7 times higher E consump and a 3.3 times higher E prod. In humid areas, E troph was 5 times higher, due to a 2.5 times higher E consump and a 2 times higher E prod. The interannual variation of herbivore biomass, a major determinant of NSP, was 60 % lower in agricultural than in natural systems dominated by homeotherms, and was decoupled from the variability of precipitation. Agricultural systems reach higher NSP by (1) diverting a major proportion of ANPP from the detritus to the grazing chain, (2) converting more efficiently consumption into NSP, and (3) stabilizing herbivore biomass across years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Avila RE, DiMarco O, Agnusdei M. 2012. Calidad nutritiva de láminas de Chloris gayana en estado vegetativo. Efecto de la reducción del tamaño foliar y envejecimiento. Archivos Latinoamericanos de producción animal 20:17–27.

    Google Scholar 

  • Bailey DW, Gross JE, Laca EA, Rittenhouse LR, Coughenour MB, Swift DM, Sims PL. 1996. Mechanisms that result in large herbivore grazing distribution patterns. J Range Manag 49:386–400.

    Article  Google Scholar 

  • Bennett R. 2003. The ‘direct costs’ of livestock disease: The development of a system of models for the analysis of 30 endemic livestock diseases in Great Britain. J Agric Econ 54:55–71.

    Article  Google Scholar 

  • Burton JH, Reid JT. 1969. Interrelationships among energy input, body size, age and body composition of sheep. J Nutr 97:517–24.

    CAS  PubMed  Google Scholar 

  • Cebrian J. 1999. Patterns in the fate of production in plant communities. Am Nat 154:449–68.

    Article  PubMed  Google Scholar 

  • Cebrian J. 2004. Role of first-order consumers in ecosystem carbon flow. Ecol Lett 7:232–40.

    Article  Google Scholar 

  • Coe M, Cumming D, Philipson J. 1976. Biomass and production of large African Herbivores in relation to rainfall and primary production. Oecologia 22:341–54.

    Article  Google Scholar 

  • Coughenour MB, Ellis JE, Swift DM, Coppock DL, Galvin K, McCabe JT, Hart TC. 1985. Energy extraction and use in a nomadic pastoral ecosystem. Science 230:619–25.

    Article  CAS  PubMed  Google Scholar 

  • Cyr H, Pace ML. 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361:148–50.

    Article  Google Scholar 

  • Chamaillé-Jammes S, Valeix M, Fritz H. 2007. Managing heterogeneity in elephant distribution: interactions between elephant population density and surface-water availability. J Appl Ecol 44:625–33.

    Article  Google Scholar 

  • Chapin FSIII, Matson P, Vitousek P. 2011. Trophic dynamics. Principles of terrestrial ecosystem ecology. New York: Springer. pp 297–320.

    Google Scholar 

  • Dorronsoro JR, Ferrari-Trecate G, Muselli M. 2002. A new learning method for piecewise linear regression. Artificial neural networks ICANN 2002. Berlin: Springer. pp 444–9.

    Book  Google Scholar 

  • East R. 1984. Rainfall, soil nutrient status and biomass of large African savanna mammals. Afr J Ecol 22:245–70.

    Article  Google Scholar 

  • Epstein HE, Gill RA, Paruelo JM, Lauenroth WK, Jia GJ, Burke IC. 2002. The relative abundance of three plant functional types in temperate grasslands and shrublands of North and South America: effects of projected climate change. J Biogeogr 29:875–88.

    Article  Google Scholar 

  • Fabricante I, Oesterheld M, Paruelo JM. 2009. Annual and seasonal variation of NDVI explained by current and previous precipitation across Northern Patagonia. J Arid Environ 73:745–53.

    Article  Google Scholar 

  • Fang J, Piao S, Tang Z, Peng C, Ji W. 2001. Interannual variability in net primary production and precipitation. Science 293:1723.

    Article  CAS  PubMed  Google Scholar 

  • Fourichon C, Seegers H, Bareille N, Beaudeau F. 1999. Effects of disease on milk production in the dairy cow: a review. Prev Vet Med 41:1–35.

    Article  CAS  PubMed  Google Scholar 

  • Frank DA, McNaughton SJ, Tracy BF. 1998. The ecology of the earth’s grazing ecosystems: profound functional similarities exist between the Serengeti and Yellowstone. Bioscience 48:513–21.

    Article  Google Scholar 

  • Fritz H, Duncan P. 1994. On the carrying capacity for large ungulates of African savanna ecosystems. Proc R Soc Lond B 256:77–82.

    Article  CAS  Google Scholar 

  • Golley FB. 1968. Secondary productivity in terrestrial communities. Am Zool 8:53–9.

    Google Scholar 

  • Golluscio R, Paruelo J, Mercau J, Deregibus V. 1998a. Urea supplementation effects on the utilization of low-quality forage and lamb production in Patagonian rangelands. Grass Forage Sci 53:47–56.

    Article  Google Scholar 

  • Golluscio RA, Deregibus VA, Paruelo JM. 1998b. Sustainability and range management in the Patagonian steppes. Ecología Austral 8:265–84.

    Google Scholar 

  • Heitschmidt RK, Stuth JW. 1991. Grazing management. Portland: Timber press.

    Google Scholar 

  • Hidalgo LG, Cahuepé MA, Erni AN. 1998. Digestibilidad de materia seca y contenido de proteína bruta en especies de pastizal de la Pampa Deprimida, Argentina. Investigación Agropecuaria Sanidad Animal 13:165–77.

    Google Scholar 

  • Hidalgo LG, Cauhépé MA. 2009. Argentine rangeland quality influences reproduction of yearling pregnant heifers? Grassl Sci 55:74–8.

    Article  Google Scholar 

  • Holechek JL, Peiper R, Gerbe CH. 1989. Range management principles and practices. New Jersey: Prentice Hall.

    Google Scholar 

  • Jacobo EJ, RodrÃ-guez AM, Bartoloni N, Deregibus VCA. 2006. Rotational grazing effects on rangeland vegetation at a farm scale. Rangel Ecol Manag 59:249–57.

    Article  Google Scholar 

  • Jordan PA, Botkin DB, Wolfe ML. 1971. Biomass dynamics in a moose population. Ecology 52:147–52.

    Google Scholar 

  • Kissling DW, Fernández N, Paruelo JM. 2009. Spatial risk assessment of livestock exposure to pumas in Patagonia, Argentina. Ecography 32:807–17.

    Article  Google Scholar 

  • Knapp AK, Smith MD. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–4.

    Article  CAS  PubMed  Google Scholar 

  • Koch RM, Jung HG, Crouse JD, Varel VH, Cundiff LV. 1995. Growth, digestive capability, carcass, and meat characteristics of Bison bison, Bos taurus, and Bos × Bison. J Anim Sci 73:1271–81.

    CAS  PubMed  Google Scholar 

  • Kozlovsky DG. 1968. A critical evaluation of the trophic level concept. I. Ecological efficiencies. Ecology 49:48–60.

    Article  Google Scholar 

  • Lemka L, McDowell RE, Van Vleck LD, Guha H, Salazar JJ. 1973. Reproductive efficiency and viability in two Bos indicus and two Bos taurus breeds in the tropics of India and Colombia. J Anim Science 36:644–52.

    Google Scholar 

  • León RJC, Bran D, Collantes M, Paruelo JM, Soriano A. 1998. Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8:125–44.

    Google Scholar 

  • Lindeman R. 1942. The trophic dynamic aspect of ecology. Ecology 23:399–418.

    Article  Google Scholar 

  • McNaughton S, Sala O, Oesterheld M. 1993. Comparative ecology of African and South American arid to subhumid ecosystems. In: Goldblatt P, Ed. Biological relationships between Africa and South America. New Haven: Yale University Press. p 548–67.

    Google Scholar 

  • McNaughton SJ, Oesterheld M, Frank DA, Williams KJ. 1989. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142–4.

    Article  CAS  PubMed  Google Scholar 

  • McNaughton SJ, Oesterheld M, Frank DA, Williams KJ. 1991. Primary and secondary production in terrestrial ecosystems. In: Cole J, Lovett G, Findlay S, Eds. Comparative analyses of ecosystems. Patterns, mechanisms, and theories. New York: Springer. p 120–39.

    Chapter  Google Scholar 

  • Mduma SAR, Sinclair ARE, Hilborn R. 1999. Food regulates the Serengeti wildebeest: a 40-year record. J Anim Ecol 68:1101–22.

    Google Scholar 

  • Meyer K, Hummel J, Clauss M. 2010. The relationship between forage cell wall content and voluntary food intake in mammalian herbivores. Mammal Review 40:221–45.

    Google Scholar 

  • Oesterheld M, Sala OE, McNaughton SJ. 1992. Effect of animal husbandry on herbivore-carrying capacity at a regional scale. Nature 356:234–6.

    Article  CAS  PubMed  Google Scholar 

  • Ogutu JO, Owen-Smith N. 2005. Oscillations in large mammal populations: are they related to predation or rainfall? Afr J Ecol 43:332–9.

    Google Scholar 

  • Olff H, Ritchie ME, Prins HHT. 2002. Global environmental controls of diversity in large herbivores. Nature 415:901–4.

    Article  CAS  PubMed  Google Scholar 

  • Owen-Smith N, Marshal JP. 2010. Definitive case studies. In: Owen-Smith N, Ed. Dynamics of large herbivore populations in changing environments towards appropiate models. The Atrium, Southern gate, Chichester, West Sussex: Wiley-Blackwell. p 197.

  • Owen-Smith N, Mills DMGL. 2006. Manifold interactive influences on the population dynamics of a multiple ungulate assemblege. Ecol Monogr 76:73–92.

    Google Scholar 

  • Paruelo JM, Golluscio RA, Guerschman JP, Cesa A, Jouve VV, Garbulsky MF. 2004. Regional scale relationships between ecosystem structure and functioning: the case of the Patagonian steppes. Global Ecol Biogeogr 13:385–95.

    Article  Google Scholar 

  • Paruelo JM, Jobbágy EG, Sala OE, Lauenroth WK, Burke IC. 1998. Functional and structural convergence of temperate grassland and shrubland ecosystems. Ecol Appl 8:194–206.

    Article  Google Scholar 

  • Paruelo JM, Lauenroth WK. 1998. Interannual variability of NDVI and its relationship to climate for North American shrublands and grasslands. J Biogeogr 25:721–33.

    Article  Google Scholar 

  • Perelman S, León R, Oesterheld M. 2001. Cross-scale vegetation patterns of Flooding Pampa grasslands. J Ecol 89:562–77.

    Article  Google Scholar 

  • Pettorelli N, Bro-Jorgensen J, Durant SM, Blackburn T, Carbone C. 2009. Energy availability and density estimates in African ungulates. Am Nat 173:698–704.

    Google Scholar 

  • Piñeiro G, Paruelo JM, Oesterheld M. 2006. Potential long-term impacts of livestock introduction on carbon and nitrogen cycling in grasslands of Southern South America. Glob Chang Biol 12:1267–84.

    Article  Google Scholar 

  • Robinson MR, Pilkington JG, Clutton-Brock TH, Pemberton JM, Kruuk LEB, Snook R. 2006. Live fast, die young: trade-offs between fitness components and sexually antagonistic selection on weaponry in soay sheep. Evolution 60:2168–81.

    Google Scholar 

  • Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D. 2012. Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos Trans R Soc B 367:3135–44.

    Article  Google Scholar 

  • Sala OE, Parton WJ, Joyce LA, Lauenroth WK. 1988. Primary production of the central grassland region of the United States. Ecology 69:40–5.

    Article  Google Scholar 

  • Schaefer AL, Young BA, Chimwano AM. 1978. Ration digestion and retention times of digesta in domestic cattle (Bos taurus), American bison (Bison bison), and Tibetan yak (Bos grunniens). Can J Zool 56:2355–8.

    Article  CAS  PubMed  Google Scholar 

  • Semmartin MA, Oyarzabal M, Loreti J, Oesterheld MN. 2007. Controls of primary productivity and nutrient cycling in a temperate grassland with year-round production. Austral Ecol 32:416–28.

    Article  Google Scholar 

  • Somlo R, Durañona C, Ortiz R. 1985. Valor nutritivo de especies forrajeras patagónicas. Revista Argentina de Producción Anim 5:589–605.

    Google Scholar 

  • Soriano A. 1983. Deserts and semideserts of Patagonia. In: West NE, Ed. Temperate deserts and semi-deserts. Amsterdam: Elsevier. p 423–60.

    Google Scholar 

  • Soriano A. 1992. Rio de La Plata Grasslands. In: Coupland RT, Ed. Ecosystems of the world 8A. Natural grasslands. Introduction and western hemisphere. Amsterdam: Elsevier. p 367–407.

    Google Scholar 

  • Tapia AE. 2005. Archaeological perspectives on the Ranquel chiefdoms in the north of the dry pampas, in the eighteenth and nineteenth centuries. Int J Hist Archaeol 9:209–28.

    Article  Google Scholar 

  • Treydte AC, Heitkönig IMA, Prins HHT, Ludwig F. 2007. Trees improve grass quality for herbivores in African savannas. Perspec Plant Ecol Evol Syst 8:197–205.

    Article  Google Scholar 

  • Viglizzo EF, Frank FC, Carreño LV, Jobbágy EG, Pereyra H, Clatt J, PincéN D, Ricard MF. 2011. Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob Chang Biol 17:959–73.

    Article  Google Scholar 

  • Viglizzo EF, Lértora F, Pordomingo AJ, Bernardos JN, Roberto ZE, Del Valle H. 2001. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agric Ecosyst Environ 83:65–81.

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG. 1997. Human alteration of the global nitrogen cycle: sources and consequence s. Ecol Appl 7:737–50.

    Google Scholar 

  • Vitousek PM, Ehlrich PR, Ehlrich AH, Matson PA. 1986. Human appropriation of the products of photosynthesis. Bioscience 36:368–73.

    Article  Google Scholar 

  • Wilson DE, Reeder DAM. 2005. Mammal species of the world. A taxonomic and geographic reference. John Hopkins University Press.

Download references

Acknowledgments

Alejandro Lotti, Jorge Latuf. Fernando Pacín, Fernando Canosa and María Cruz De Angelis from CREA movement provided data from different farms of Argentina. We thank C. Feldkamp for feedback on the difference between subtropical and temperate systems. L. Garibaldi, P. Vitousek, and two anonymous reviewers greatly improved a previous version of this manuscript. Gonzalo Irisarri was financed by CONICET and Fundación YPF, through José Estenssoro scholarship. This project was financed by the ANPCyT and the University of Buenos Aires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gonzalo N. Irisarri.

Additional information

Author contribution

J.G.N. Irisarri and M. Oesterheld gathered data, analyzed it and wrote the paper. R.A. Golluscio and J.M. Paruelo wrote the paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irisarri, J.G.N., Oesterheld, M., Golluscio, R.A. et al. Effects of Animal Husbandry on Secondary Production and Trophic Efficiency at a Regional Scale. Ecosystems 17, 738–749 (2014). https://doi.org/10.1007/s10021-014-9756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9756-6

Key words:

Navigation