Skip to main content
Log in

Determination of charge carrier transport parameters in a polymer electrolyte intended for Li-ion batteries using electrochemical impedance analysis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes are key components in many electrochemical devices. For an in-depth study of the basic parameters of such electrolytes, we developed a previously proposed method in order to determine the charge carrier density (n), mobility (μ), and diffusion coefficient (D) of ionic conductors using electrochemical impedance analysis. This reinforced method was tested with a composite solid electrolyte based on polyethylene oxide, ethylene carbonate, LiCF3SO3, and alumina filler by analyzing DC conductivity, frequency dependence of AC conductivity, and the complex dielectric function. The results show a clear picture of the temperature dependence of the parameters n, μ, and D; for example, at 20 °C, more than 15% of the total number of ions available in the electrolyte are mobile, and this value decreases with increasing temperature, most probably due to increased ion association in agreement with measurements using other techniques. The increase in ionic conductivity with increasing temperature is thus due to an increased mobility of the ionic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jiang Y, Yan X, Ma Z, Mei P, Xiao W, You Q, Zhang Y (2018) Development of the PEO based solid polymer electrolytes for all-solid state lithium ion batteries. Polymers 10(11):1237

    PubMed Central  Google Scholar 

  2. Wen LC (2017) Nanocomposite polymer electrolytes for electric double layer capacitors (EDLCs) application. In: Nanomaterials in energy devices. CRC Press, Boca Raton, pp 110–149

    Google Scholar 

  3. Bandara TMWJ, DeSilva LA, Ratnasekera JL, Hettiarachchi KH, Wijerathna AP, Thakurdesai M, Mellander BE (2019) High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles. Renew Sustain Energy Rev 103:282–290

    CAS  Google Scholar 

  4. Harry T (2017) Ionic conduction applications, edited by. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer International Publishing, Basel, pp 247–266

    Google Scholar 

  5. Bandara TMWJ, Svensson T, Dissanayake MAKL, Furlani M, Jayasundara WJMJSR, Mellander BE (2012) Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells. Energy Procedia 14:1607–1612

    Google Scholar 

  6. Hu X, Joo PH, Wang H, Matios E, Wang C, Luo J, Lu X, Yang K, Li W (2019) Nip the sodium dendrites in the bud on planar doped Graphene in liquid/gel electrolytes. Adv Funct Mater 29(9):1807974

    Google Scholar 

  7. Kwon SJ, Kim T, Jung BM, Lee SB, Choi UH (2018) Multifunctional epoxy-based solid polymer electrolytes for solid-state Supercapacitors. ACS Appl Mater Interfaces 10(41):35108–35117

    CAS  PubMed  Google Scholar 

  8. Cho W, Kim YR, Song D, Choi HW, Kang YS (2014) High-efficiency solid-state polymer electrolyte dye-sensitized solar cells with a bi-functional porous layer. J Mater Chem A 2(42):17746–17750

    CAS  Google Scholar 

  9. Scrosati B, Croce F, Persi L (2000) impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147(5):1718–1721

    CAS  Google Scholar 

  10. Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2001) impedance study of (PEO) 10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46(12):1829–1836

    CAS  Google Scholar 

  11. Bandara TMWJ, Mellander BE (2011) Evaluation of mobility diffusion coefficient and density of charge carriers in ionic liquids and novel electrolytes. In ionic liquids: theory, properties, new approaches Ed. (Alexander Kokorin, InTech, Rijeka, Croatia, p 383–406

    Google Scholar 

  12. Watanabe M, Nagano S, Sanui K, Ogata N (1988) Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ionics 28:911–917

    Google Scholar 

  13. Watanabe M, Nagano S, Sanui K, Ogata N (1986) Ion conduction mechanism in network polymers from poly (ethylene oxide) and poly (propylene oxide) containing lithium perchlorate. Solid State Ionics 18:338–342

    Google Scholar 

  14. Hayamizu K, Akiba E, Bando T, Aihara Y (2002) 1H 7Li and 19F nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O)nCH3 (n= 3–50) doped with LiN(SO2CF3)2. J Chem Phys 117(12):5929–5939

    CAS  Google Scholar 

  15. Agrawal RC, Kumar R, Gupta RK (1998) Estimation of ionic drift velocity on some fast Ag+ ion conducting systems. Mater Sci Eng B57(1):46–51

    CAS  Google Scholar 

  16. Almond DP, Duncan GK, West AR (1983) The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics 8(2):159–164

    CAS  Google Scholar 

  17. Jönsson M, Welch K, Hamp S, Strømme M (2006) Bacteria counting with impedance spectroscopy in a micro probe station. J Phys Chem B 110(20):10165–10169

    PubMed  Google Scholar 

  18. Klein RJ, Zhang S, Dou S, Jones BH, Colby RH, Runt J (2006) Modeling electrode polarization in dielectric spectroscopy: ion mobility and mobile ion concentration of single-ion polymer electrolytes. J Chem Phys 124(14):144903

    PubMed  Google Scholar 

  19. Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander BE (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+ I using electrical and dielectric measurements. Solid State Ionics 189(1):63–68

    CAS  Google Scholar 

  20. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867

    CAS  PubMed  Google Scholar 

  21. Pitawala HMJC, Dissanayake MAKL, Seneviratne VA (2007) Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf. Solid State Ionics 178(13–14):885–888

    CAS  Google Scholar 

  22. Winie T, Arof AK, Thomas S (Eds) (2019) Polymer electrolytes: Characterization techniques and energy applications. John Wiley & Sons pp 53–56

  23. Psarras GC (2006) Hopping conductivity in polymer matrix–metal particles composites. Compos Part A Appl Sci Manuf 37(10):1545–1553

    Google Scholar 

  24. Dam T, Tripathy SN, Paluch M, Jena SS, Pradhan DK (2016) Investigations of relaxation dynamics and observation of nearly constant loss phenomena in PEO20-LiCF3SO3-ZrO2 based polymer nano-composite electrolyte. Electrochim Acta 202:147–156

    CAS  Google Scholar 

  25. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int J Electrochem Sci 3(5):597–608

    CAS  Google Scholar 

  26. Khamzin AA, Popov II, Nigmatullin RR (2014) Correction of the power law of ac conductivity in ion-conducting materials due to the electrode polarization effect. Phys Rev E 89(3):032303

    CAS  Google Scholar 

  27. Bandara TMWJ, Mellander BE, Albinsson I, Dissanayake MAKL, Pitawala HMJC (2009) Thermal and dielectric properties of PEO/EC/Pr 4 N+ I− polymer electrolytes for possible applications in photo-electro chemical solar cells. J Solid State Electrochem 13(8):1227–1232

    CAS  Google Scholar 

  28. Gray FM (1997) Polymer electrolytes. Royal Society of Chemistry monographs, Cambridge

    Google Scholar 

  29. Gray FM (1991) Polymer electrolytes: Fundamentals and technological applications. VCH, New York

    Google Scholar 

  30. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(22):223001

    Google Scholar 

  31. Williamson MJ, Southall JP, Hubbard HSA, Johnston SF, Davies GR, Ward IM (1998) NMR measurements of ionic mobility in model polymer electrolyte solutions. Electrochim Acta 43(10–11):1415–1420

    CAS  Google Scholar 

  32. Bjorkstam JL, Villa M, Farrington GC (1981) Temperature dependence of the Na+ distribution in β-aluminas. Solid State Ionics 5:153–156

    CAS  Google Scholar 

  33. Bruce PG, Vincent CA (1989) Effect of ion association on transport in polymer electrolytes. Faraday Discuss Chem Soc 88:43–54

    CAS  Google Scholar 

  34. Kakihana M, Schantz S, Torell LM, Stevens JR (1990) Dissociated ions and ion-ion interactions in poly (ethylene oxide) based NaCF3SO3 complexes. Solid State Ionics 40:641–644

    Google Scholar 

  35. Schantz S, Torell LM, Stevens JR (1991) Ion pairing effects in poly (propylene glycol)–salt complexes as a function of molecular weight and temperature: A Raman scattering study using NaCF3SO3 and LiClO4. J Chem Phys 94(10):6862–6867

    CAS  Google Scholar 

  36. Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69(3–4):309–319

    CAS  Google Scholar 

Download references

Funding

Research support from the University of Peradeniya Sri Lanka, University Research Grant No. URG/2019/27IS, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. W. J. Bandara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandara, T.M.W.J., DeSilva, L.A., Gunasekara, L.B.E. et al. Determination of charge carrier transport parameters in a polymer electrolyte intended for Li-ion batteries using electrochemical impedance analysis. J Solid State Electrochem 24, 1207–1216 (2020). https://doi.org/10.1007/s10008-020-04604-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04604-3

Navigation