Skip to main content
Log in

Modified electrode with reduced graphene oxide/poly(3-hydroxyphenylacetic acid): a new platform for oligonucleotide hybridization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports a new platform for oligonucleotide hybridization, prepared by electropolymerization of 3-hydroxyphenylacetic acid onto gold electrode modified with reduced graphene oxide. Electrochemical polymerization indicated that reduced graphene oxide was able to oxidize the monomer in lower potential than the gold electrode. Their structural, morphological, and electrochemical properties were evaluated by Fourier transform infrared spectroscopy, elemental analysis, atomic force microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The new platform exhibited high efficiency for immobilization and hybridization detection of oligonucleotides through both direct electrochemical oxidation of guanine residues and indirect oxidation of the electroactive intercalator, ethidium bromide. The genosensor could detect the complementary sequence with a detection limit of 10.4 pmol L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aydemir N, Malmström J, Sejdic JT (2016) Conducting polymer based electrochemical biosensors. Phys Chem Chem Phys 18:8264–8277

    Article  CAS  Google Scholar 

  2. Ferreira DC, Rodrigues LP, Madurro JM, Madurro AGB, Oliveira RTS, Abrahao O (2014) Graphite electrodes modified with poly(3-hydroxybenzoic acid) for oligonucleotides sensors. Int J Electrochem Sci 9:6246–6257

    Google Scholar 

  3. Silva TAR, Ferreira LF, Boodts JFC, Eiras SP, Madurro JM, Madurro AGB (2008) Poly(4-hydroxyphenylacetic acid): a new material for immobilization of biomolecules. Pol Eng Sci 48:1963–1970har

    Article  CAS  Google Scholar 

  4. Ferreira LF, Santos CC, Cruz FS, Correa RAMS, Verly RM, Silva LM (2014) Preparation, characterization, and application in biosensors of functionalized platforms with poly(4-aminobenzoic acid). J Mat Sci 50:1103–1116

    Article  Google Scholar 

  5. Oliveira RML, Vieira SN, Alves HC, França EG, Franco DL, Ferreira LF, Madurro AGB, Madurro JM (2009) Electrochemical and morphological studies of an electroactive material derived from 3-hydroxyphenylacetic acid: a new matrix for oligonucleotide hybridization. J Mat Sci 45:475–482

    Article  Google Scholar 

  6. Rodrigues LP, Ferreira DC, Sonoda MT, Madurro AGB, Abrahao O, Madurro JM (2014) Electropolymerization mechanisms of hydroxyphenylacetic acid isomers. J Mol Struct 1072:298–306

    Article  CAS  Google Scholar 

  7. Santos PS, Nascimento R, Rodrigues LP, Santos FA, Faria PC, Martins JR, Madurro AGB, Madurro JM, Goulart LR (2012) Functional epitope core motif of the Anaplasma marginale major surface protein 1a and its incorporation onto bioelectrodes for antibody detection. PLoS One 7:e33045

    Article  CAS  Google Scholar 

  8. Silva TV, Teixeira RR, Franco DL, Madurro JM, Madurro AGB, Espindola FS (2012) Bioelectrode for detection of human salivary amylase. Mat Sci Eng C 32:530–535

    Article  Google Scholar 

  9. Silva JV, Pimentel DM, Souto DEP, Luz RCS, Damos FS (2013) Application of horseradish peroxidase/polyaniline/bis(2-aminoethyl) polyethylene glycol-functionalized carbon nanotube composite as a platform for hydrogen peroxide detection with high sensitivity at low potential. J Solid State Electrochem 17:2795–2804

    Article  Google Scholar 

  10. Castro JGM, Ferreira GMM, Oliveira FG, Damos FS, Luz RCS (2014) A novel platform based on graphene/poly(3,4-ethylenedioxythiophene)/iron (III) hexacyanoferrate (II) composite film for electrocatalytic reduction of H2O2. J Electroanal Chem 732:93–100

    Article  Google Scholar 

  11. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  12. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  13. Jules LH, Nello F, Pedro E, Sandro C, Jan T (2016) Electrochemical biosensors and nanobiosensors. Essays Biochem 60:69–80

    Article  Google Scholar 

  14. Bertok T, Sediva A, Katrlik J, Gemeiner P, Mikula M, Nosko M, Tkac J (2013) Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles. Talanta 108:11–18

    Article  CAS  Google Scholar 

  15. Carrara S, Baj-Rossi C, Boero C, Micheli G (2014) Do carbon nanotubes contribute to electrochemical biosensing. Electrochim Acta 128:102–112

    Article  CAS  Google Scholar 

  16. Li W, Yang YJ (2014) The reduction of graphene oxide by elemental copper and its application in the fabrication of graphene supercapacitor. J Solid State Electrochem 18:1621–1626

    Article  CAS  Google Scholar 

  17. Liu F, Du Y, Cheng Y, Yin W, Hou C, Huo D, Chen C, Fa H (2016) A selective and sensitive sensor based on highly dispersed cobalt porphyrin-Co3O4-graphene oxide nanocomposites for the detection of methyl parathion. J Solid State Electrochem 20:599–607

    Article  CAS  Google Scholar 

  18. Wessely PJ, Schwalke U (2014) In situ CCVD grown bilayer graphene transistors for applications in nanoelectronics. Appl Surf Sci 291:83–86

    Article  CAS  Google Scholar 

  19. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954–965

    Article  CAS  Google Scholar 

  20. Zhang W, Su Y (2015) Development of DNA monitoring platform based on poly(xanthurenic acid) functionalized FePt/reduced graphene oxide. J Solid State Electrochem 19:1285–1291

    Article  CAS  Google Scholar 

  21. Gao YS, Xu JK, Lu LM, Wu LP, Zhang KX, Nie T, Zhu XF, Wu Y (2014) Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine. Biosens Bioelectron 62:261–267

    Article  CAS  Google Scholar 

  22. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  23. Brodie BC (1860) Sur le poids atomique du graphite. Ann Chim Phys 59:466–472

    Google Scholar 

  24. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  25. Staudenmaier L (1898) Verfahren zur darstellung der graphitsaure. Ber Dtsch Chem Ges 31:1481–1487

    Article  CAS  Google Scholar 

  26. Lerf A, He HY, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  27. Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  28. Liu X, Kim H, Guo LJ (2013) Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells. Org Electron 14:591–598

    Article  CAS  Google Scholar 

  29. Akhavan O (2011) Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49:11–18

    Article  CAS  Google Scholar 

  30. Krishnamoorthy K, Kim GS, Kim SJ (2013) Graphene nanosheets: ultrasound assisted synthesis and characterization. Ultrason Sonochem 20:644–649

    Article  CAS  Google Scholar 

  31. Zhu P, Shen M, Xiao S, Zhang D (2011) Experimental study on the reducibility of graphene oxide by hydrazine hydrate. Physica B: Condens Matter 406:498–502

    Article  CAS  Google Scholar 

  32. Liang X, Wang Y, Zheng H, Wu Z (2014) X-ray absorption spectroscopy study on the thermal and hydrazine reduction of graphene oxide. J Electron Spectrosc Relat Phenom 196:89–93

    Article  CAS  Google Scholar 

  33. Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Khoobi M, Behzadi H, Hamedani M, Sheikhnejad R (2014) DNA methylation detection by a novel fluorimetric nanobiosensor for early cancer diagnosis. Biosens Bioelectron 60:35–44

    Article  CAS  Google Scholar 

  34. Huang H, Bai W, Dong C, Guo R, Liu Z (2015) An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens Bioelectron 68:442–446

    Article  CAS  Google Scholar 

  35. Yang FQ, Guan J, Li SP (2007) Fast simultaneous determination of 14 nucleosides and nucleobases in cultured Cordyceps using ultra-performance liquid chromatography. Talanta 73:269–273

    Article  CAS  Google Scholar 

  36. Silva TAR, Ferreira LF, Souza LM, Goulart LR, Madurro JM, Brito-Madurro AG (2009) New approach to immobilization and specific-sequence detection of nucleic acids based on poly(4-hydroxyphenylacetic acid). Mater Sci Eng C 29:539–545

    Article  CAS  Google Scholar 

  37. Zheng L, Liu X, Zhou M, Ma Y, Wu G, Lu X (2014) Ultrasensitive determination of DNA sequences by flow injection chemiluminescence using silver ions as labels. Anal Chim Acta 848:67–73

    Article  CAS  Google Scholar 

  38. Kim JH, Chong CK, Sinniah M, Sinnadurai J, Song HO, Park H (2015) Clinical diagnosis of early dengue infection by novel one-step multiplex real-time RT-PCR targeting NS1 gene. J Clin Virol 65:11–19

    Article  CAS  Google Scholar 

  39. Chen AY, Chen A (2013) Fluorescence in situ hybridization. J Invest Dermatol 133:e8

    CAS  Google Scholar 

  40. Palecek E, Bartosik M (2012) Electrochemistry of nucleic acids. Chem Rev 112:3427–3348

    Article  CAS  Google Scholar 

  41. Huang K-J, Niu D-J, Liu X, Wu Z-W, Fan Y, Chang Y-F, Wu Y-Y (2011) Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor. Electrochim Acta 56:2947–2953

    Article  CAS  Google Scholar 

  42. Liu T, Zhu X, Cui L, Ju P, Qu X, Ai S (2011) Simultaneous determination of adenine and guanine utilizing PbO 2-carbon nanotubes-ionic liquid composite film modified glassy carbon electrode. J Electroanal Chem 651:216–221

    Article  CAS  Google Scholar 

  43. Wang HB, Zhang HD, Xu LL, Gan T (2014) Electrochemical biosensor for simultaneous determination of guanine and adenine based on dopamine-melanin colloidal nanospheres–graphene composites. J Solid State Electrochem 18:2435–2442

    Article  CAS  Google Scholar 

  44. Biris AR, Pogacean F, Coroş M, Kannarpady GK, Watanabe F, Biris AS (2014) The study of adenine and guanine electrochemical oxidation using electrodes modified with graphene-platinum nanoparticles composites. Electrochim Acta 139:386–393

    Article  Google Scholar 

  45. Yalin C, Tao M, Yi C, Jianying W (2016) A sensitive porphyrin/reduced graphene oxide electrode for simultaneous detection of guanine and adenine. J Solid State Electrochem 20:2055–2062

    Article  Google Scholar 

  46. Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016) New directions for carbon-based detectors: exploiting the versatility of carbon substrates in electroanalysis. Biosens Bioelectron 76:195–212

    Article  CAS  Google Scholar 

  47. Tang C, Yogeswaran U, Chen SM (2009) Simultaneous determination of adenine guanine and thymine at multi-walled carbon nanotubes incorporated with poly(new fuchsin) composite film. Anal Chim Acta 636:19–27

    Article  CAS  Google Scholar 

  48. Goyal RN, Gupta VK, Oyama M, Bachheti N (2007) Voltammetric determination of adenosine and guanosine using fullerene-C(60)-modified glassy carbon electrode. Talanta 71:1110–1117

    Article  CAS  Google Scholar 

  49. Rasheed PA, Sandhyarani N (2014) Graphene-DNA electrochemical sensor for the sensitive detection of BRCA1 gene. Sensors Actuators B Chem 204:777–782

    Article  CAS  Google Scholar 

  50. Filip J, Kasák P, Tkac J (2015) Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors. Chem Zvesti 69:112–133

    CAS  Google Scholar 

  51. Sheshmani S, Amini R (2013) Preparation and characterization of some graphene based nanocomposite materials. Carbohydr Pol 95:348–359

    Article  CAS  Google Scholar 

  52. Yang J, Zhou Y, Sun L, Zhao N, Zang C, Cheng X (2012) Synthesis, characterization and optical property of graphene oxide films. Appl Surf Sci 258:5056–5060

    Article  CAS  Google Scholar 

  53. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023

    Article  CAS  Google Scholar 

  54. Wang D, Li Y, Hasin P, Wu Y (2010) Preparation, characterization, and electrocatalytic performance of graphene-methylene blue thin films. Nano Res 4:124–130

    Article  Google Scholar 

  55. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6:2667–2673

    Article  CAS  Google Scholar 

  56. Jabari SR, Jahanshahi M, Rashidi A, Ghoreyshi AA (2013) Synthesize and characterization of graphene nanosheets with high surface area and nano-porous structure. Appl Surf Sci 276:672–681

    Article  Google Scholar 

  57. Han X, Fang X, Shi A, Wang J, Zhang Y (2013) An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform. Anal Biochem 443:117–123

    Article  CAS  Google Scholar 

  58. Du M, Yang T, Li X, Jiao K (2012) Fabrication of DNA/graphene/polyaniline nanocomplex for label-free voltammetric detection of DNA hybridization. Talanta 88:439–444

    Article  CAS  Google Scholar 

  59. Suni II (2008) Impedance methods for electrochemical sensors using nanomaterials. Trends Anal Chem 27:604–611

    Article  CAS  Google Scholar 

  60. Rodrigues LP, Ferreira DC, Ferreira LF, Cuadros-Orellana S, de Oliveira GC, Madurro AGB, de Oliveira RJ, Abrahão O, Madurro JM (2015) Electropolymerization of hydroxyphenylacetic acid isomers and the development of a bioelectrode for the diagnosis of bacterial meningitis. J Appl Electrochem 45:1277–1287

    Article  CAS  Google Scholar 

  61. Jones CP, Jurkschat K, Crossley A, Compton RG, Riehl BL, Banks CE (2007) Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental is interpretations. Langmuir 23:9501–9504

    Article  CAS  Google Scholar 

  62. Rahi A, Sattarahmady N, Heli H (2015) Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms. Sci Rep 5:18060

    Article  CAS  Google Scholar 

  63. Abdul RP, Sandhyarani N (2015) Attomolar detection of BRCA1 gene based on gold nanoparticle assisted signal amplification. Biosens Bioelectron 65:333–340

    Article  Google Scholar 

  64. Das R, Goel AK, Sharma MK, Upadhyay S (2015) Electrochemical DNA sensor for anthrax toxin activator gene atxA-detection of PCR amplicons. Biosens Bioelectron 74:939–946

    Article  CAS  Google Scholar 

  65. Daneshpour M, Moradi LS, Izadi P, Omidfar K (2016) Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe3O4/TMC/Au nanocomposite and PT-modified electrode. Biosens Bioelectron 77:1095–1103

    Article  CAS  Google Scholar 

  66. Castro ACH, França EG, Paula LF, Soares MMCN, Goulart LR, Madurro JM, Brito-Madurro AG (2014) Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus. Appl Surf Sci 314:273–279

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their financial support. AFM Shimadzu at the Institute of Physics (INFIS/UFU) supported by the grant “Pró-Equipamentos” from the Brazilian Agency CAPES. This work had a participation of a member of the Rede Mineira de Química (RQ-MG) supported by FAPEMIG (Project: CEX-RED-00010-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Marcos Madurro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.V., Madurro, A.G.B. & Madurro, J.M. Modified electrode with reduced graphene oxide/poly(3-hydroxyphenylacetic acid): a new platform for oligonucleotide hybridization. J Solid State Electrochem 21, 2129–2139 (2017). https://doi.org/10.1007/s10008-017-3601-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3601-8

Keywords

Navigation