Skip to main content
Log in

Influence of inert components on the formation of conducting channels in ion-exchange membranes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the results of investigation of the influence of inert binder and reinforcing fabric on structural organization and mechanism of current transfer in homogeneous and heterogeneous ion-exchange membranes are presented by theoretical analysis of parameters of the extended three-wire conductivity model. It was established that analogy in reorganization of the current paths takes place in the course of inclusion of the reinforcing fabric in perfluorinated membranes and addition of polyethylene and nylon 6 to ion-exchange resins during preparation of heterogeneous membranes. In comparison with perfluorinated membranes, the essential difference in conducting properties of heterogeneous membranes is the opportunity for the current transfer via the channel filled with equilibrium solution. The size of this channel decreases with increase in the volume fraction of the inert component inside the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a :

Current fractions passing through the mixed channel

b :

Current fractions passing through the gel channel

c :

Current fractions passing through the solution channel

C :

Solution concentration (mol L−1)

C iso :

Isoconductance concentration (mol L − 1)

D :

Fractions of solution in the mixed channel

E :

Fractions of gel phases in the mixed channel

EW :

Equivalent weight (gdry/mol – SO3 )

f :

Volume fraction of resin in the ion-exchange column or gel phase in ion-exchange resin and membrane

K d :

Dimensionless conductivity of resin or gel phase of resin and membrane

K m :

Dimensionless conductivity of ion-exchange column, resin or membrane

m :

Density of texture (threads cm−1)

n :

Specific water content (mol H2O/mol-SO3 )

Q :

Ion-exchange capacity (mol-SO3 /gsw)

R :

Resistance (Ohm); W, water content (%)

α :

Parameter characterizing the spatial arrangement of membrane phases

φ :

Volume fraction of polyethylene

\( \overline{\kappa} \) :

Resin conductivity (S m−1)

κ c :

Column conductivity (S m−1)

κ iso :

Conductivity of gel phase of membrane (S m−1)

\( {\overline{\kappa}}_{iso} \) :

Conductivity of gel phase of the resin (S m−1)

κ m :

Membrane conductivity (S m−1)

κ s :

Conductivity of electrolyte solution (S m−1)

References

  1. Narebska A, Wόdzki R (1979) Diffusion of electrolytes across inhomogeneous permselective membranes. Die Angewandte Macromolekulare Chemie 80:105–118

    Article  CAS  Google Scholar 

  2. Noorjahan A, Choi P (2015) Effect of free volume redistribution on the diffusivity of water and benzene in poly(vinyl alcohol). Chem Engineering Sci 121:258–267

    Article  CAS  Google Scholar 

  3. Haubold H-G, Vad T, Jungbluth H, Hiller P (2001) Nano structure of Nafion: a SAXS study. Electrochim Acta 46:1559–1563

    Article  CAS  Google Scholar 

  4. Kirkpatrik S (1973) Percolation and conduction. Rev Modern Physics 45:574–588

    Article  Google Scholar 

  5. Saberi AA (2015) Recent advances in percolation theory and its applications. Phys Reports 578:1–32

    Article  Google Scholar 

  6. Berezina NP, Karpenko LV (2000) Percolation effects in ion-exchange materials. Colloid J 62:676–684

    Article  CAS  Google Scholar 

  7. Zabolotsky VI, Nikonenko VV (1993) J Membr Sci 79:181–198

    Article  CAS  Google Scholar 

  8. Berezina NP, Kononenko NA, Dyomina OA, Gnusin NP (2008) Characterization of ion-exchange membrane materials: properties vs structure. Adv Colloid and Interface Sci 139:3–28

    Article  CAS  Google Scholar 

  9. Gnusin NP, Berezina NP, Kononenko NA, Demina OA (2004) Transport-structural parameters to characterize ion exchange membranes. J Membr Sci 243:301–310

    Article  CAS  Google Scholar 

  10. Chaabane L, Dammak L, Nikonenko VV, Bulvestre G, Auclair B (2007) The influence of absorbed methanol on the conductivity and on the microstructure of ion-exchange membranes. J Membr Sci 298:126–135

    Article  CAS  Google Scholar 

  11. Karpenko-Jereb LV, Berezina NP (2009) Determination of structural, selective, electrokinetic and percolation characteristics of ion-exchange membranes from conductive data. Desalination 245:587–596

    Article  CAS  Google Scholar 

  12. Gohil GS, Shahi VK, Rangarajan R (2004) Comparative studies on electrochemical characterization of homogeneous and heterogeneous type of ion-exchange membranes. J Membr Sci 240:211–219

    Article  CAS  Google Scholar 

  13. Tuan LX, Buess-Herman C (2007) Study of water content and microheterogeneity of CMS cation exchange membrane. Chem Phys Letters 434:49–55

    Article  CAS  Google Scholar 

  14. Berezina NP, Kubaisy AA, Timofeev SV, Karpenko LV (2007) Template synthesis and electrotransport behavior of polymer composites based on perfluorinated membranes incorporating polyaniline. J Solid State Electrochem 11:378–389

    Article  CAS  Google Scholar 

  15. Chaabane L, Bulvestre G, Larchet C, Nikonenko V, Deslouis C (2008) Takenouti H J Membr Sci 323:167–175

    Article  CAS  Google Scholar 

  16. Gnusin NP, Berezina NP, Demina OA, Dvorkina GA (1997) Electroconductivity of ion-exchange materials in the presence of inert components. Rus J of Electrochem 33:1246–1253

    CAS  Google Scholar 

  17. Meleshko VP, Shatalov FYA, Alymova AT (1969) Dependencies of KU-2 cation-exchange and AV-17 anion-exchange resins conductivity on divinylbenzene content. Zh Fizicheskoy Khimii (Rus J Phys Chem) 53:2323 in Russian

    Google Scholar 

  18. Demina ОА, Kononenko NA, Falina IV (2014) New approach to the characterization of ion-exchange membranes using a set of model parameters. Pet Chem 54:515–525

    Article  CAS  Google Scholar 

  19. Gnusin NP, Berezina NP, Kononenko NA, Demina OA, Annikova LA (2009a) The three-wire model and Lichtenecker’s equation for calculations of the conductivity of ion-exchange columns. Rus J Phys Chem A 83:107–110

    Article  CAS  Google Scholar 

  20. Gnusin NP, Demina OA, Annikova LA (2009b) Method of model parameter calculation of ion-exchange resins. Rus J Electrochem 45:490–495

    Article  CAS  Google Scholar 

  21. Berezina NP, Gnusin NP, Demina OA, Annikova LA (2009) Effect of polyaniline on the current passing through structural fragments of ion-exchange sulfonic-cationite resins and membranes. Rus J Electrochem 45:1226–1233

    Article  CAS  Google Scholar 

  22. Gnusin NP, Grebeniuk VD, Pevnitskaya MV (1972) Electrochemistry of ionits. Nauka, Novosibirsk in Russian

    Google Scholar 

  23. Gnusin NP, Berezina NP, Beketova VP, Merkulova TA (1977) Conductivity of ion-exchange columns. Electrochimiya (Electrochemistry) 13:1712–1715 in Russian

    CAS  Google Scholar 

  24. Demina OA, Berezina NP, Sata T, Demin AV (2002) Transport-structural parameters of domestic and foreign anion-exchange membranes. Rus J Electrochem 38:896–902

    Article  CAS  Google Scholar 

  25. Demina OA, Falina IV (2014) Certificate RF of state registration of the computer programs № 2014662877. Calculation of extended three-wire model parameters of ion-exchange materials. Publ. 13.01.2015, Bull. № 1(99) 2015, 20.01.2015. in Russian

  26. Pourcelly G, Oikonomou A, Gavach C, Hurwitz HD (1990) Influence of the water content on the kinetics of counter-ion transport in perfluorosulphonic membranes. J Electroanal Chem 287:43–59

    Article  CAS  Google Scholar 

  27. Berezina NP, Kononenko NA (1994) Hydrophilic properties of heterogeneous ion-exchange membranes. Rus J Electrochem 30:329–335

    Google Scholar 

  28. Shel’deshov NV, Chaika VV, Zabolotskii VI (2008) Structural and mathematical models for pressure-dependent electrodiffusion of an electrolyte through heterogeneous ion-exchange membranes: pressure-dependent electrodiffusion of NaOH through the MA-41 anion-exchange membrane. Rus J Electrochem 44:1036–1046

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out under financial support by the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Falina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falina, I.V., Demina, O.A., Kononenko, N.A. et al. Influence of inert components on the formation of conducting channels in ion-exchange membranes. J Solid State Electrochem 21, 767–775 (2017). https://doi.org/10.1007/s10008-016-3415-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3415-0

Keywords

Navigation