Skip to main content
Log in

On the corrosion behavior of Al2Cu by local electrochemical impedance spectroscopy using droplet cell microscopy

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this short communication, we study the electrochemical behavior of an individual Al2Cu intermetallic phase (coexisting with α-Al) in 0.1 M NaCl solution (with and without inhibitor) using droplet cell microscopy (DCM). The influence of CeCl3 (250 ppm) addition to the electrolyte is studied through potentiodynamic polarization (DC method). The results suggest that the addition of CeCl3 retards the cathodic reaction rate, thereby decreasing the corrosion rate. This study also highlights on the stability of the system, which is essential to perform local electrochemical impedance spectroscopy (LEIS) using DCM. Fabrication of a proper silicone rubber gasket at the flat capillary tip is important to achieve reproducibility, in order to use DCM in contact mode (as confined droplet). The stability and linearity of the system is proved by sweeping frequencies in both directions and by performing Kramers-Kronig transformation (KKT), respectively. LEIS reveals a charge transfer resistance of 2.83 kΩ cm2 as an effect of inhibitor addition, whereas the charge transfer resistance is 1.9 kΩ cm2 in 0.1 M NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Suter T, Peter T, Böhni H (1995) Microelectrochemical investigations of MnS inclusions. Mater Sci Forum 192–194:25–40. doi:10.4028/www.scientific.net/msf.192-194.25

    Article  Google Scholar 

  2. Hassel AW, Lohrengel MM (1997) The scanning droplet cell and its application to structured nanometer oxide films on aluminium. Electrochim Acta 42:3327–3333. doi:10.1016/s0013-4686(97)00184-9

    Article  CAS  Google Scholar 

  3. Kot I, Krawiec H (2015) The use of a multiscale approach in electrochemistry to study the corrosion behaviour of as-cast AZ91 magnesium alloy. J Solid State Electrochem 19:2379–2390. doi:10.1007/s10008-015-2877-9

    Article  CAS  Google Scholar 

  4. Birbilis N, Padgett BN, Buchheit RG (2005) Limitations in microelectrochemical capillary cell testing and transformation of electrochemical transients for acquisition of microcell impedance data. Electrochim Acta 50:3536–3544. doi:10.1016/j.electacta.2005.01.010

    Article  CAS  Google Scholar 

  5. Mardare AI, Hassel AW (2009) Quantitative optical recognition of highly reproducible ultrathin oxide films in microelectrochemical anodization. Rev Sci Instrum 80:046106. doi:10.1063/1.3117210

    Article  Google Scholar 

  6. Alvarez R, Sanchez M (2002) Frequency domain transform and the coulostatic technique. Corros Rev 20:69–94. doi:10.1515/corrrev.2002.20.1-2.69

    Article  CAS  Google Scholar 

  7. Li J, Birbilis N, Buchheit RG (2015) Electrochemical assessment of interfacial characteristics of intermetallic phases present in aluminium alloy 2024-T3. Corros Sci 101:155–164. doi:10.1016/j.corsci.2015.09.012

    Article  CAS  Google Scholar 

  8. Zhang X, Hashimoto T, Lindsay J, Zhou X (2016) Investigation of the de-alloying behaviour of θ-phase (Al2Cu) in AA2024-T351 aluminium alloy. Corros Sci 108:85–93. doi:10.1016/j.corsci.2016.03.003

    Article  CAS  Google Scholar 

  9. Dimitrov N (1999) Copper redistribution during corrosion of aluminum alloys. J Electrochem Soc 146:98. doi:10.1149/1.1391570

    Article  CAS  Google Scholar 

  10. Osório WR, Spinelli JE, Freire CMA, Cardona MB, Garcia A (2007) The roles of Al2Cu and of dendritic refinement on surface corrosion resistance of hypoeutectic Al–Cu alloys immersed in H2SO4. J Alloys Compd 443:87–93. doi:10.1016/j.jallcom.2006.10.010

    Article  Google Scholar 

  11. Aldykewicz AJ, Isaacs HS, Davenport AJ (1995) The investigation of cerium as a cathodic inhibitor for aluminum-copper alloys. J Electrochem Soc 142:3342–3350. doi:10.1149/1.2049985

    Article  CAS  Google Scholar 

  12. Venkatasubramanian G, Sheik Mideen A, Jha AK, Kulandainathan MA (2014) Inhibitive effect of Ce(III) and La(III) cations for AA2219 aluminium alloy corrosion in sodium chloride medium. Mater Chem Phys 148:262–275. doi:10.1016/j.matchemphys.2014.07.043

    Article  CAS  Google Scholar 

  13. Birbilis N, Buchheit RG (2005) Electrochemical characteristics of intermetallic phases in aluminum alloys. J Electrochem Soc 152:B140. doi:10.1149/1.1869984

    Article  CAS  Google Scholar 

  14. Hassel AW, Mardare AI (2015) Localised electrochemical impedance spectroscopy using a scanning droplet cell microscope. J Electroanal Chem 737:93–99. doi:10.1016/j.jelechem.2014.07.007

    Article  CAS  Google Scholar 

  15. Rosas-Camacho O, Uquidi-Macdonald M, Macdonald DD (2009) Deterministic modeling of the corrosion of Low-carbon steel by dissolved carbon dioxide and the effect of acetic acid. I-effect of carbon dioxide. ECS Trans 19:143–165. doi:10.1149/1.3259806

    Article  CAS  Google Scholar 

  16. Arjmand F, Adriaens A (2012) Investigation of 304L stainless steel in a NaCl solution using a microcapillary electrochemical droplet cell: comparison with conventional electrochemical techniques. Electrochim Acta 59:222–227. doi:10.1016/j.electacta.2011.10.065

    Article  CAS  Google Scholar 

  17. Arjmand F, Adriaens A (2012) Influence of pH and chloride concentration on the corrosion behavior of unalloyed copper in NaCl solution: a comparative study between the micro and macro scales. Materials 5:2439–2464. doi:10.3390/ma5122439

    Article  CAS  Google Scholar 

  18. Fasmin F, Srinivasan R (2015) Detection of nonlinearities in electrochemical impedance spectra by Kramers–Kronig Transforms. J Solid State Electrochem 19:1833–1847. doi:10.1007/s10008-015-2824-9

    Article  CAS  Google Scholar 

  19. Kollender JP, Voith M, Schneiderbauer S, Mardare AI, Hassel AW (2015) Highly customisable scanning droplet cell microscopes using 3D-printing. J Electroanal Chem 740:53–60. doi:10.1016/j.jelechem.2014.12.043

    Article  CAS  Google Scholar 

  20. Lohrengel MM, Heiroth S, Kluger K, Pilaski M, Walther B (2006) Microimpedance—localized material analysis. Electrochim Acta 51:1431–1436. doi:10.1016/j.electacta.2005.02.120

    Article  CAS  Google Scholar 

  21. Krawiec H, Vignal V, Akid R, Wiley J (2008) Numerical modelling of the electrochemical behaviour of 316 stainless steel based upon static and dynamic experimental microcapillary-based techniques: effect of electrolyte flow and capillary size. Surf Interface Anal 40:315–319. doi:10.1002/sia.2753

    Article  CAS  Google Scholar 

  22. Rajan V, Neelakantan L (2015) Note: design and fabrication of a simple versatile microelectrochemical cell and its accessories. Rev Sci Instrum 86:096101. doi:10.1063/1.4930145

    Article  Google Scholar 

  23. Arjmand F, Adriaens A (2014) Microcapillary electrochemical droplet cells: applications in solid-state surface analysis. J Solid State Electrochem 18:1779–1788. doi:10.1007/s10008-014-2413-3

    Article  CAS  Google Scholar 

  24. Buchheit RG (1995) A compilation of corrosion potentials reported for intermetallic phases in aluminum alloys. J Electrochem Soc 142:3994. doi:10.1149/1.2048447

    Article  CAS  Google Scholar 

  25. Birbilis N, Buchheit RG, Ho DL, Forsyth M (2005) Inhibition of AA2024-T3 on a phase-by-phase basis using an environmentally benign inhibitor, cerium dibutyl phosphate. Electrochem Solid-State Lett 8:C180. doi:10.1149/1.2073672

    Article  CAS  Google Scholar 

  26. Ilevbare GO, Scully JR (2001) Mass-transport-limited oxygen reduction reaction on AA2024-T3 and selected intermetallic compounds in chromate-containing solutions. Corrosion 57:134–152. doi:10.5006/1.3290339

    Article  CAS  Google Scholar 

  27. Presuel-Moreno FJ, Jakab MA, Scully JR (2005) Inhibition of the oxygen reduction reaction on copper with cobalt, cerium, and molybdate ions. J Electrochem Soc 152:B376. doi:10.1149/1.1997165

    Article  CAS  Google Scholar 

  28. Oltra R, Vuillemin B, Rechou F, Henon C (2009) Effect of aeration on the microelectrochemical characterization of Al2Cu intermetallic phases. Electrochem Solid-State Lett 12:C29–C31. doi:10.1149/1.3224876

    Article  CAS  Google Scholar 

  29. Alabbas FM, Bhola SM, Spear JR, Olson DL, Mishra B (2013) The shielding effect of wild type iron reducing bacterial flora on the corrosion of linepipe steel. Eng Fail Anal 33:222–235. doi:10.1016/j.engfailanal.2013.05.020

    Article  CAS  Google Scholar 

  30. Elewady YA, Lorenz WJ (1981) Inhibition of iron corrosion in aerated solutions containing sulphate. Mater Chem 6:223–231. doi:10.1016/0390-6035(81)90044-4

    Article  CAS  Google Scholar 

  31. Kálmán E (1994) Corrosion inhibition by 1-hydroxy-ethane-1,1-diphosphonic acid. J Electrochem Soc 141:3357. doi:10.1149/1.2059339

    Article  Google Scholar 

  32. Veys-Renaux D, Rocca E (2015) Initial stages of multi-phased aluminium alloys anodizing by MAO: micro-arc conditions and electrochemical behaviour. J Solid State Electrochem 19:3121–3129. doi:10.1007/s10008-015-2935-3

    Article  CAS  Google Scholar 

  33. Mishra AK, Balasubramaniam R (2007) Corrosion inhibition of aluminium by rare earth chlorides. Mater Chem Phys 103:385–393. doi:10.1016/j.matchemphys.2007.02.079

    Article  CAS  Google Scholar 

  34. Mahovic Poljacek S, Risovic D, Cigula T, Gojo M (2012) Application of electrochemical impedance spectroscopy in characterization of structural changes of printing plates. J Solid State Electrochem 16:1077–1089. doi:10.1007/s10008-011-1490-9

    Article  Google Scholar 

  35. Páez MA, Biaggio SR, Rocha-Filho RC, Sepúlveda Y, Zagal JH, Monsalve A, Zhou X, Skeldon P, Thompson GE (2003) On understanding the effect of benzotriazole during barrier-film growth on Al-Cu alloys. J Solid State Electrochem 7:442–449. doi:10.1007/s10008-002-0345-9

    Article  Google Scholar 

  36. Li S, Li Y, Zhang Y, Liu J, Yu M (2015) Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy. Int J Miner Metall Mater 22:167–174. doi:10.1007/s12613-015-1057-3

    Article  CAS  Google Scholar 

  37. Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem 176:275–295. doi:10.1016/s0022-0728(84)80324-1

    Article  CAS  Google Scholar 

  38. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

V. R thanks Mr. Santhoshkumar Bhogi for his assistance during casting.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Viswanathan Rajan or Lakshman Neelakantan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, V., Neelakantan, L. On the corrosion behavior of Al2Cu by local electrochemical impedance spectroscopy using droplet cell microscopy. J Solid State Electrochem 21, 603–609 (2017). https://doi.org/10.1007/s10008-016-3388-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3388-z

Keywords

Navigation