Skip to main content
Log in

One-step synthesis of nitrogen-doped porous carbon for supercapacitors utilizing KNO3 as an electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nitrogen-doped porous carbons were prepared using a facile method, with low-biotechnology fulvic acid potassium salts as a precursor. The prepared carbons had a high surface area (1623 m2 g−1) and good electrochemical properties, making them suitable electrode materials for supercapacitors. Nitrogen-doped porous carbons were tested as an electrode in both 6 M KOH aqueous solution and different concentrations KNO3 aqueous solution. The nitrogen-doped porous carbons with unique microstructure and nitrogen functionalities exhibited a capacitance of 235 F g−1 in a 6 M KOH aqueous solution. Electrochemical investigation showed that the nitrogen-doped porous carbons exhibited a broad potential operational window in a 2.5 M KNO3 aqueous solution. Furthermore, a high capacitance retention of 88.1 % was achieved even after 5000 cycles at 1.7 V. Potassium nitrate solutions in a wide range of concentrations were also proven to be promising electrolytes for electrochemical capacitors because they are cheap, noncorrosive, electrochemically stable, and compatible to diverse current collectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104(10):4245–4270

    Article  CAS  Google Scholar 

  2. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science Magazine 321(5889):651–652

    CAS  Google Scholar 

  3. Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25(37):5336–5342

    Article  CAS  Google Scholar 

  4. Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater 26(17):2676–2682

    Article  CAS  Google Scholar 

  5. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950

    Article  CAS  Google Scholar 

  6. Seredych M, Koscinski M, Sliwinska-Bartkowiak M, Bandosz TJ (2013) Charge storage accessibility factor as a parameter determining the capacitive performance of nanoporous carbon-based supercapacitors. ACS Sustain Chem Eng 1(8):1024–1032

    Article  CAS  Google Scholar 

  7. Seredych M, Koscinski M, Sliwinska-Bartkowiak M, Bandosz TJ (2012) Active pore space utilization in nanoporous carbon-based supercapacitors: effects of conductivity and pore accessibility. J Power Sources 220:243–252

    Article  CAS  Google Scholar 

  8. Hulicova-Jurcakova D, Seredych M, Jin Y, Lu GQ, Bandosz TJ (2010) Specific anion and cation capacitance in porous carbon blacks. Carbon 48(6):1767–1778

    Article  CAS  Google Scholar 

  9. Conway B (1999) Electrochemical supercapacitor. Scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  10. Wang W, Liu W, Zeng Y, Han Y, Yu M, Lu X, Tong Y (2015) A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv Mater 27(23):3572–3578

    Article  CAS  Google Scholar 

  11. Balogun M-S, Lyu F, Luo Y, Qiu W, Meng H, Li J, Mai W, Mai L, Tong Y (2016) All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy

    Google Scholar 

  12. Wu X-L, Wang W, Guo Y-G, Wan L-J (2011) Template-free synthesis and supercapacitance performance of a hierachically porous oxygen-enriched carbon material. J Nanosci Nanotechnol 11(3):1897–1904

    Article  CAS  Google Scholar 

  13. Xu B, Yue S, Sui Z, Zhang X, Hou S, Cao G, Yang Y (2011) What is the choice for supercapacitors: graphene or graphene oxide. Energy & Environmental Science 4(8):2826–2830

    Article  CAS  Google Scholar 

  14. Lei Z, Bai D, Zhao X (2012) Improving the electrocapacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping. Microporous Mesoporous Mater 147(1):86–93

    Article  Google Scholar 

  15. Wu Z, Webley PA, Zhao D (2012) Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture. J Mater Chem 22(22):11379–11389

    Article  CAS  Google Scholar 

  16. D-s Y, T-x Z, S-l Z, W-j Z, S-s M, N-n X (2011) Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties. Electrochem Commun 13(3):242–246

    Article  Google Scholar 

  17. Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy & Environmental Science 5(7):7950–7955

    Article  CAS  Google Scholar 

  18. Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI, Suárez-García F, Tascón JM, Lu GQ (2009) Highly stable performance of supercapacitors from phosphorus-enriched carbons. J Am Chem Soc 131(14):5026–5027

    Article  CAS  Google Scholar 

  19. Liu X, Zhou W, Yang L, Li L, Zhang Z, Ke Y, Chen S (2015) Correction: nitrogen and sulfur co-doped porous carbon derived from human hair as highly efficient metal-free electrocatalysts for hydrogen evolution reactions. J Mater Chem A 3(18):10135–10135

    Article  CAS  Google Scholar 

  20. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater 19(11):1800–1809

    Article  CAS  Google Scholar 

  21. Yang M, Cheng B, Song H, Chen X (2010) Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochim Acta 55(23):7021–7027

    Article  CAS  Google Scholar 

  22. Wheeler DA, Wang G, Ling Y, Li Y, Zhang JZ (2012) Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy & Environmental Science 5(5):6682–6702

    Article  CAS  Google Scholar 

  23. Zhao L, Baccile N, Gross S, Zhang Y, Wei W, Sun Y, Antonietti M, Titirici M-M (2010) Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon 48(13):3778–3787

    Article  CAS  Google Scholar 

  24. Xu B, Hou S, Cao G, Wu F, Yang Y (2012) Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J Mater Chem 22(36):19088–19093

    Article  CAS  Google Scholar 

  25. Xia Y, Mokaya R (2005) Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials. Chem Mater 17(6):1553–1560

    Article  CAS  Google Scholar 

  26. Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy & Environmental Science 3(9):1294–1301

    Article  CAS  Google Scholar 

  27. Xu B, Duan H, Chu M, Cao G, Yang Y (2013) Facile synthesis of nitrogen-doped porous carbon for supercapacitors. J Mater Chem A 1(14):4565–4570

    Article  CAS  Google Scholar 

  28. Xu B, Zheng D, Jia M, Cao G, Yang Y (2013) Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochim Acta 98:176–182

    Article  CAS  Google Scholar 

  29. Peter B, Melke J, Muench F, Ensinger W, Roth C (2014) Stable platinum nanostructures on nitrogen-doped carbon obtained by high-temperature synthesis for use in PEMFC. J Appl Electrochem 44(5):573–580

    Article  CAS  Google Scholar 

  30. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  Google Scholar 

  31. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51(26):5567–5580

    Article  Google Scholar 

  32. Dollimore D, Spooner P, Turner A (1976) The BET method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surface Technology 4(2):121–160

    Article  CAS  Google Scholar 

  33. Walton KS, Snurr RQ (2007) Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J Am Chem Soc 129(27):8552–8556

    Article  CAS  Google Scholar 

  34. Chen X, Zhao B, Cai Y, Tadé MO, Shao Z (2013) Amorphous V–O–C composite nanofibers electrospun from solution precursors as binder-and conductive additive-free electrodes for supercapacitors with outstanding performance. Nanoscale 5(24):12589–12597

    Article  CAS  Google Scholar 

  35. Wang Y, Su F, Wood CD, Lee JY, Zhao XS (2008) Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind Eng Chem Res 47(7):2294–2300

    Article  CAS  Google Scholar 

  36. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8):1731–1742

    Article  CAS  Google Scholar 

  37. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095

    Article  CAS  Google Scholar 

  38. Kajdos A, Kvit A, Jones F, Jagiello J, Yushin G (2010) Tailoring the pore alignment for rapid ion transport in microporous carbons. J Am Chem Soc 132(10):3252–3253

    Article  CAS  Google Scholar 

  39. Korenblit Y, Rose M, Kockrick E, Borchardt L, Kvit A, Kaskel S, Yushin G (2010) High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4(3):1337–1344

    Article  CAS  Google Scholar 

  40. Li F, Morris M, Chan K-Y (2011) Electrochemical capacitance and ionic transport in the mesoporous shell of a hierarchical porous core–shell carbon structure. J Mater Chem 21(24):8880–8886

    Article  CAS  Google Scholar 

  41. Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313

    Article  CAS  Google Scholar 

  42. Kulkarni SB, Patil UM, Shackery I, Sohn JS, Lee S, Park B, Jun S (2014) High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. J Mater Chem A 2(14):4989–4998

    Article  CAS  Google Scholar 

  43. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840

    Article  CAS  Google Scholar 

  44. Ye F, Zhao B, Ran R, Shao Z (2014) Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic Sn and graphite oxide: an outstanding anode material for lithium-ion batteries. Chem Eur J 20(14):4055–4063

    Article  CAS  Google Scholar 

  45. Jansen R, Van Bekkum H (1995) XPS of nitrogen-containing functional groups on activated carbon. Carbon 33(8):1021–1027

    Article  CAS  Google Scholar 

  46. Fan X, Zhang L, Zhang G, Shu Z, Shi J (2013) Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon 61:423–430

    Article  CAS  Google Scholar 

  47. Sánchez-Sánchez A, Suárez-García F, Martínez-Alonso A, Tascón JM (2014) Aromatic polyamides as new precursors of nitrogen and oxygen-doped ordered mesoporous carbons. Carbon 70:119–129

    Article  Google Scholar 

  48. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19(3):438–447

    Article  CAS  Google Scholar 

  49. Jiang H-L, Liu B, Lan Y-Q, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc 133(31):11854–11857

    Article  CAS  Google Scholar 

  50. Zhang J, Zhao X (2012) On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem 5(5):818–841

    Article  CAS  Google Scholar 

  51. Hulicova D, Kodama M, Hatori H (2006) Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem Mater 18(9):2318–2326

    Article  CAS  Google Scholar 

  52. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  CAS  Google Scholar 

  53. Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy & Environmental Science 5(2):5842–5850

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC, Nos. 21364004), by the Provincial Natural Science Foundation of Gansu (1506RJZA102), and by the College Students Training Project for Creative and Entrepreneurship of China (201510731005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Ming Luo.

Electronic supplementary material

ESM 1

(DOCX 683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.Z., Li, P., Zhao, X. et al. One-step synthesis of nitrogen-doped porous carbon for supercapacitors utilizing KNO3 as an electrolyte. J Solid State Electrochem 21, 171–181 (2017). https://doi.org/10.1007/s10008-016-3350-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3350-0

Keywords

Navigation