Skip to main content
Log in

Electrochemical synthesis, characterisation and comparative study of new conducting polymers from amino-substituted naphthalene sulfonic acids

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Conducting polymers have been synthesised electrochemically from 4-amino-3-hydroxynaphthalene-1-sulfonic acid (4A3HN1SA), 4-aminonaphthalene-1-sulfonic acid (4AN1SA) and 7-amino-4-hydroxynaphthalene-2-sulfonic acid (7A4HN2SA) on glassy carbon electrodes. The influence of the positive potential limit on the potential cycling polymerisation of 4A3HN1SA was studied, and a sufficiently high potential limit allowed better film growth. Under similar polymerisation conditions, the three monomers showed different radical formation potentials and different voltammetric peak profiles. The effects of scan rate and solution pH on the electrochemical properties of the polymers were investigated, in the range between 10 and 200 mV s−1, all the modified electrodes showing a surface-confined electrode process. In the pH range from 2.0 to 9.0, the anodic peak potentials decreased linearly with increasing pH for all the three modified electrodes. The modified electrodes were characterised by electrochemical impedance spectroscopy in pH 4.0 and 7.0 buffer solutions. The results showed a more porous poly(7A4HN2SA) film, which is less affected by pH change than the other two films. Scanning electron microscopy of the polymer films also showed significant differences in their morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inzelt G (2012) Conducting polymers. A new area in electrochemistry, 2nd edn. Springer, Heidelberg, Germany

    Book  Google Scholar 

  2. Asplund M, Nyberg T, Inganäs O (2010) Electroactive polymers for neural interfaces. Polym Chem 1:1374–1391

    Article  CAS  Google Scholar 

  3. Zhu G, Zu J, Yue R, Lu B, Hou J (2012) Novel poly-bridged-naphthalene with blue-light-emitting property via electropolymerization. J Appl Polym Sci 123:2706–2714

    Article  CAS  Google Scholar 

  4. Murphy LJ (1998) Reduction of interference response at a hydrogen peroxide detecting electrode using electropolymerized films of substituted naphthalenes. Anal Chem 70:2928–2935

    Article  CAS  Google Scholar 

  5. Pham MC, Bouallala S, Le LA, Dang VM, Lacaze PC (1997) Study of a heteropolyanion-doped poly(5-amino-1-naphthol) film electrode and its catalytic activity. Electrochim Acta 42:439–447

    Article  CAS  Google Scholar 

  6. Balamurugan A, Chen SM (2007) Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid. Anal Chim Acta 596:92–98

    Article  CAS  Google Scholar 

  7. D’Eramo F, Marioli JM, Arevalo AA, Sereno LE (1999) HPLC analysis of carbohydrates with electrochemical detection at a poly-1-naphthylamine/copper modified electrode. Electroanalysis 11:481–486

    Article  Google Scholar 

  8. Geto A, Tessema M, Admassie S (2014) Determination of histamine in fish muscle at multi-walled carbon nanotubes coated conducting polymer modified glassy carbon electrode. Synth Met 191:135–140

    Article  CAS  Google Scholar 

  9. Geto A, Amare M, Tessema M, Admassie S (2012) Polymer-modified glassy carbon electrode for the electrochemical detection of quinine in human urine and pharmaceutical formulations. Anal Bioanal Chem 404:525–530

    Article  CAS  Google Scholar 

  10. Geto A, Amare M, Tessema M, Admassie S (2012) Voltammetric determination of nicotine at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode. Electroanalysis 24:659–665

    Article  CAS  Google Scholar 

  11. Won MS, Yoon JH, Shim YB (2005) Determination of selenium with a poly(1,8-diamino-naphthalene)-modified electrode. Electroanalysis 17:1952–1958

    Article  CAS  Google Scholar 

  12. Zewde BW, Admassie S (2012) Electrocatalysis of oxygen reduction at poly(4-amino-3-hydroxynaphthalene sulfonic acid) and platinum loaded polymer modified glassy carbon electrodes. J Power Sources 216:502–507

    Article  CAS  Google Scholar 

  13. Tasch S, Graupner W, Leising G, Pu L, Wagner MW, Gruhbs RH (1995) Red-orange electroluminescence with new soluble and air-stable poly(naphthalene-vinylene)s. Adv Mater 7:903–906

    Article  CAS  Google Scholar 

  14. Huang Z, Shi L, Qu L, Hong X (2003) Electrochemical polymerization of β-naphthalene sulfonic acid in the mixed electrolyte of boron trifluoride diethyl etherate and trifluoroacetic acid. J Electroanal Chem 544:41–46

    Article  CAS  Google Scholar 

  15. Mori T, Kijima M (2009) Synthesis and electroluminescence properties of carbazole-containing 2,6-naphthalene-based conjugated polymers. Eur Polym J 45:1149–1157

    Article  CAS  Google Scholar 

  16. Mori T, Kijima M (2007) Synthesis and optical properties of polynaphthalene derivatives. Opt Mater 30:545–552

    Article  CAS  Google Scholar 

  17. Bhandari H, Choudhary V, Dhawan SK (2011) Influence of self-doped poly(aniline-co-4-amino-3-hydroxy-naphthalene-1-sulfonic acid) on corrosion inhibition behaviour of iron in acidic medium. Synth Met 161:753–762

    Article  CAS  Google Scholar 

  18. Meneguzzi A, Ferreira CA, Pham MC, Delamar M, Lacaze PC (1999) Electrochemical synthesis and characterization of poly(5-amino-1-naphthol) on mild steel electrodes for corrosion protection. Electrochim Acta 44:2149–2156

    Article  CAS  Google Scholar 

  19. Meneguzzi A, Pham MC, Lacroix JC, Piro B, Adenier A, Ferreira CA, Lacaze PC (2001) Electroactive poly(aromatic amine) films for iron protection in sulfate medium. J Electrochem Soc 148:B121–B126

    Article  CAS  Google Scholar 

  20. Yildiz R, Dogan T, Dehri I (2014) Evaluation of corrosion inhibition of mild steel in 0.1 M HCl by 4-amino-3-hydroxynaphthalene-1-sulphonic acid. Corros Sci 85:215–221

    Article  CAS  Google Scholar 

  21. Bereket G, Hur E (2009) The corrosion protection of mild steel by single layered polypyrrole and multilayered polypyrrole/poly(5-amino-1-naphthol) coatings. Prog Org Coat 65:116–124

    Article  CAS  Google Scholar 

  22. Bhandari H, Bansal V, Choudhary V, Dhawan SK (2009) Influence of reaction conditions on the formation of nanotubes/nanoparticles of polyaniline in the presence of 1-amino-2-naphthol-4-sulfonic acid and applications as electrostatic charge dissipation material. Polym Int 58:489–502

    Article  CAS  Google Scholar 

  23. Ramachandran R, Kathiravan R, Rani M, Kabilan S, Jeong YT (2012) Synthesis and characterization of novel conducting 1,5-naphthalenediamine–aniline copolymer. Synth Met 162:1636–1642

    Article  CAS  Google Scholar 

  24. Marjanovic GC, Trchova M, Matejka P, Holler P, Marjanovic B, Juranic I (2006) Electrochemical oxidative polymerization of sodium 4-amino-3-hydroxynaphthalene-1-sulfonate and structural characterization of polymeric products. React Funct Polym 66:1670–1683

    Article  Google Scholar 

  25. Thiemann C, Brett CMA (2001) Electrosynthesis and properties of conducting polymers derived from aminobenzoic acids and from aminobenzoic acids and aniline. Synth Met 123:1–9

    Article  CAS  Google Scholar 

  26. Vorotyntsev MA, Zinovyeva VA, Konev DV (2010) In: Cosnier S, Karyakin A (eds) Electropolymerization: concepts, materials and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  27. Kumar SA, Chen SM (2007) Electrochemically polymerized composites of conducting poly(p-ABSA) and flavins (FAD, FMN, RF) films and their use as electrochemical sensors: a new potent electroanalysis of NADH and NAD+. Sensor Actuat B 123:964–977

    Article  CAS  Google Scholar 

  28. Enache T, Oliveira-Brett AM (2015) Phenol and para-substituted phenols electrochemical oxidation pathways. J Electroanal Chem 655:9–16

    Article  Google Scholar 

  29. Laviron E, Roullier L, Degrand C (1980) A multilayer model for the study of space distributed redox modified electrodes. Part II: theory and application of linear potential sweep voltammetry for a simple reaction. J Electroanal Chem 112:11–23

    Article  CAS  Google Scholar 

  30. Wei Z, Wan M (2003) Synthesis and characterization of self-doped poly(aniline co-aminonaphthalene sulfonic acid) nanotubes. J Appl Polym Sci 87:1297–1301

    Article  CAS  Google Scholar 

  31. Barsan MM, Pinto EM, Florescu M, Brett CMA (2009) Development and characterization of a new conducting carbon composite electrode. Anal Chim Acta 635:71–78

    Article  CAS  Google Scholar 

  32. Zhang Z, Wei Z, Zhang L, Wan M (2005) Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Mater 53:1373–1379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Fundação para a Ciência e a Tecnologia (FCT), Portugal PTDC/QUI-QUI/116091/2009, POCH, POFC-QREN (co-financed by the FSE and European Community FEDER funds through the program COMPETE – Programa Operacional Factores de Competitividade under the projects PEst-C/EME/UI0285/2013) and CENTRO-07-0224-FEDER-002001 (MT4MOBI)) is gratefully acknowledged and Dr. Madalina M. Barsan is thanked for her help with the impedance experiments. A.G is grateful to the Coimbra Group for its support through Coimbra Group Short Stay Scholarship Programme for young researchers from Sub-Saharan Africa. He acknowledges Samara University, Ethiopia, for granting research leave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. A. Brett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geto, A., Brett, C.M.A. Electrochemical synthesis, characterisation and comparative study of new conducting polymers from amino-substituted naphthalene sulfonic acids. J Solid State Electrochem 20, 2969–2979 (2016). https://doi.org/10.1007/s10008-016-3338-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3338-9

Keywords

Navigation