Skip to main content

Advertisement

Log in

The preparation of porous graphite and its application in lithium ion batteries as anode material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphite is the most widely used anode material for lithium ion batteries (LIBs). However, the performance of graphite is limited by its slow charging rates. In this work, porous graphite was successfully prepared by nickel-catalyzed gasification. The existence of the pores and channels in graphite particles can greatly increase the number of sites for Li-ion intercalation-deintercalation in graphite lattice and reduce the Li-ion diffusion distance, which can greatly facilitate the rapid diffusion of lithium ions; meanwhile, the pores and channels can act as buffers for the volume change of the graphite in charging-discharging processes. As a result, the prepared graphite with pores and channels exhibits excellent cycling stability at high rate as anode materials for LIBs. The porous graphite offers better cycling performance than pristine graphite, retaining 81.4 % of its initial reversible capacity after 1500 cycles at 5 C rates. The effective synthesis strategy might open new avenues for the design of high-performance graphite materials. The porous graphite anode material is proposed in applications of high rate charging Li-ion batteries for electric vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  3. Wu YP, Rahm E, Holze R (2003) J Power Sources 114:228–236

    Article  CAS  Google Scholar 

  4. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) J Mater Chem 21:9938–9954

    Article  CAS  Google Scholar 

  5. Striebel KA, Shim J, Cairns EJ, Kostecki R, Lee YJ, Reimer J, Richardson TJ, Ross PN, Song X, Zhuang GV (2004) J Electrochem Soc 151:A857–A866

    Article  CAS  Google Scholar 

  6. Zhang SS (2006) J Power Sources 161:1385–1391

    Article  CAS  Google Scholar 

  7. Peled E, Menachem C, Bar-Tow D, Melman A (1996) J Electrochem Soc 143:L4–L7

    Article  CAS  Google Scholar 

  8. Wu YP, Holze R (2003) J Solid State Electrochem 8:73–78

    Article  CAS  Google Scholar 

  9. Nakajima T, Koh M, Singh RN, Shimada M (1999) Electrochim Acta 44:2879–2888

    Article  CAS  Google Scholar 

  10. Yu P, Ritter JA, White RE, Popov BN (2000) J Electrochem Soc 147:1280–1285

    Article  CAS  Google Scholar 

  11. Veeraraghavan B, Durairajan A, Haran B, Popov B, Guidotti R (2002) J Electrochem Soc 149:A675–A681

    Article  CAS  Google Scholar 

  12. Yoshio M, Wang H, Fukuda K, Hara Y, Adachi Y (2000) J Electrochem Soc 147:1245–1250

    Article  CAS  Google Scholar 

  13. Chang H, Bard AJ (1991) J Am Chem Soc 113:5588–5596

    Article  CAS  Google Scholar 

  14. Lukas M, Meded V, Vijayaraghavan A, Song L, Ajayan PM, Fink K, Wenzel W, Krupke R (2013) Nat Commun 4:1379

    Article  Google Scholar 

  15. Pan ZJ, Yang RT (1991) J Catal 130:161–172

    Article  CAS  Google Scholar 

  16. Holstein WL, Boudart M (1982) J Catal 75:337–353

    Article  CAS  Google Scholar 

  17. Deng TS, Zhou XP (2016) Mater Lett 176:151–154

    Article  CAS  Google Scholar 

  18. Ferrari AC, Robertson J (2000) Phys Rev B Condens Matter 61:14095–14107

    Article  CAS  Google Scholar 

  19. Menachem C, Peled E, Burstein L, Rosenberg Y (1997) J Power Sources 68:277–282

    Article  CAS  Google Scholar 

  20. Kamisah MM, Munirah HS, Mansor MS (2007) Ionics 13:223–225

    Article  CAS  Google Scholar 

  21. Zhang S, Shi PF (2004) Electrochim Acta 49:1475–1482

    Article  CAS  Google Scholar 

  22. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  23. Arico AS, Bruce P, Scrosati B, Tarasconand JM, VanSchalkwijk W (2005) Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  24. Zhang NX, Tang HQ (2012) J Power Sources 218:52–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by Microvast Inc. and was approved for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, T., Zhou, X. The preparation of porous graphite and its application in lithium ion batteries as anode material. J Solid State Electrochem 20, 2613–2618 (2016). https://doi.org/10.1007/s10008-016-3260-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3260-1

Keywords

Navigation