Skip to main content
Log in

Uniaxial magnetization performance of Co-Al2O3 nano-composite films electrochemically synthesized from acidic aqueous solution

  • ORIGINAL ARTICLE
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, Co-Al2O3 nano-composite films containing parallel-oriented cobalt nano-cylinders with length-to-diameter aspect ratios of ca. 4000 are synthesized to acquire a uniaxial magnetization property. The Co nano-cylinders were electrodeposited into anodized aluminum oxide films with numerous nano-channels under a low over-potential of less than 0.1 V using an acidic aqueous solution containing CoCl2 at 75 °C. The long axis of Co nano-cylinders, which are electrodeposited at cathode potential of −0.58 V vs. Ag/AgCl, coincides with the c axis of hexagonal close packed (hcp)-Co. The Co-Al2O3 nano-composite films show a uniaxial magnetization behavior due to the large shape anisotropy of Co nano-cylinders and the large magneto-crystalline anisotropy of the hcp-Co crystal structure. We achieved coercivity and squareness values of up to 2.4 and 1.0 kOe, respectively. This study shows an effective way to produce nano-composite films of altered coercivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897–1899

    Article  CAS  Google Scholar 

  2. Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Nature 409:66–69

    Article  CAS  Google Scholar 

  3. Beach GSD, Nistor C, Knudson C, Tsoi M, Erskine JL (2005) Nat Mater 4:741–744

    Article  CAS  Google Scholar 

  4. Parkin SSP, Hayashi M, Thomas L (2008) Science 320:190–194

    Article  CAS  Google Scholar 

  5. Thurn-Albrecht T, Schotter J, Kastle GA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Science 290:2126–2129

    Article  CAS  Google Scholar 

  6. Ohgai T, Hoffer X, Gravier L, Wegrowe JE, Ansermet JP (2003) Nanotechnol 14:978–982

    Article  CAS  Google Scholar 

  7. Whitney TM, Searson PC, Jiang JS, Chien CL (1993) Science 261:1316–1319

    Article  CAS  Google Scholar 

  8. Sellmyer DJ, Zheng M, Skomski R (2001) J Phys Cond Mater 13:R433–R460

    Article  CAS  Google Scholar 

  9. Martín JL, Nogués J, Liu K, Vicent JL, Schuller IK (2003) J Magn Magn Mater 256:449–501

    Article  Google Scholar 

  10. Nielsch K, Wehrspohn RB, Barthel J, Kirschner J, Gösele U, Fischer SF, Kronmüller H (2001) Appl Phys Lett 79:1360–1362

    Article  CAS  Google Scholar 

  11. Ohgai T, Gravier L, Hoffer X, Lindeberg M, Hjort K, Spohr R, Ansermet JP (2003) J Phys D Appl Phys 36:3109–3114

    Article  CAS  Google Scholar 

  12. Cho JU, Wu JH, Min JH, Ko SP, Soh JY, Liu QX, Kim JK (2006) J Magn Magn Mater 303:e281–e285

    Article  CAS  Google Scholar 

  13. Darques M, Piraux L, Encinas A, Bayle-Guillemaud P, Popa A, Ebels U (2005) Appl Phys Lett 86:072508 1–3

    Article  Google Scholar 

  14. Cattaneo L, Franz S, Albertini F, Ranzieri P, Vincenzo A, Bestetti M, Cavallotti PL (2012) Electrochim Acta 85:57–65

    Article  CAS  Google Scholar 

  15. Han X, Liu Q, Wang J, Li S, Ren Y, Liu R, Li F (2009) J Phys D Appl Phys 42:095005–095010

    Article  Google Scholar 

  16. Kaur D, Chaudhary S, Pandya DK, Gupta R, Kotnala RK (2013) J Magn Magn Mater 344:72–78

    Article  CAS  Google Scholar 

  17. Minguez-Bacho I, Rodriguez-López S, Vázquez M, Hernández-Vélez M, Nielsch K (2014) Nanotechnol 25:145301–145302

    Article  CAS  Google Scholar 

  18. Caffarena VR, Guimarães AP, Folly WSD, Silva EM, Capitaneo JL (2008) Mater Chem Phys 107:297–304

    Article  CAS  Google Scholar 

  19. Maaz K, Karim S, Usman M, Mumtaz M, Liu J, Duan JL, Maqbool M (2010) Nanoscale Res Lett 5:1111–1117

    Article  CAS  Google Scholar 

  20. Pangarov NA, Vitkova SD (1966) Electrochim Acta 11:1733–1745

    Article  CAS  Google Scholar 

  21. Kongstein OE, Haarberg GM, Thonstad J (2007) J Appl Electrochem 37:669–674

    Article  CAS  Google Scholar 

  22. Kongstein OE, Haarberg GM, Thonstad J (2007) J Appl Electrochem 37:675–680

    Article  CAS  Google Scholar 

  23. Kim D, Park CY, Yoo BY, Sumodjo PTA, Myung NV (2003) Electrochim Acta 48:819–830

    Article  CAS  Google Scholar 

  24. Ohgai T (2012) Magnetoresistance of nanowires electrodeposited into anodized aluminum oxide nanochannels. In: Peng X (ed) Nanotechnology and nanomaterials “nanowires—recent advances”. InTech, chapter 6

  25. Yuan JH, He FY, Sun DC, Xia XH (2004) Chem Mater 16:1841–1844

    Article  CAS  Google Scholar 

  26. Mardilovich PP, Govyadinov AN, Mazurenko NI, Paterson R (1994) J Membr Sci 98:143–155

    Article  Google Scholar 

  27. Santos JS, Matos R, Trivinho-Strixino F, Pereira EC (2007) Electrochim Acta 53:644–649

    Article  CAS  Google Scholar 

  28. Belwalker A, Grasing E (2008) Van Geertruyden, Huang WZ, Misiolek WZ. J Mem Sci 319:192–198

    Article  Google Scholar 

  29. Sulka GD, Brzózka A, Zaraska L, JaskuƗa M (2010) Electrochim Acta 55:4368–4376

    Article  CAS  Google Scholar 

  30. Ohgai T, Hoffer X, Fábián A, Gravier L, Ansermet JP (2003) J Mater Chem 13:2530–2534

    Article  CAS  Google Scholar 

  31. Li F, Zhang L, Metzger RM (1998) Chem Mater 10:2470–2480

    Article  CAS  Google Scholar 

  32. Paunovic M, Datta M, Matosz M, Osaka T, Talbot JB (1998) Fundamental aspects of electrochemical deposition and dissolution including modeling, 1st edn. Pennington, New York, pp. 150–163

    Google Scholar 

  33. Valizadeh S, George JM, Leisner P, Hultman L (2001) Electrochim Acta 47:865–874

    Article  CAS  Google Scholar 

  34. Bai A, Hu CC (2002) Electrochim Acta 47:3447–3456

    Article  CAS  Google Scholar 

  35. Meng F, Morin SA, Forticaux A, Jin S (2013) Acc Chem Res 46:1616–1626

    Article  CAS  Google Scholar 

  36. Huang X, Chumlyakov YI, Ramirez AG (2012) Nanotechnol 23:125601–125602

    Article  Google Scholar 

  37. Pangarov NA (1965) J Electroanal Chem 9:70–85

    CAS  Google Scholar 

  38. Armyanov S (2000) Electrochim Acta 45:3323–3335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank New Energy and Industrial Technology Development Organization (NEDO P14015), Japan Science and Technology Agency (JST AS262Z02450K), and the Japan Society for the Promotion of Science (JSPS PE14005 and 15K06508) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Neetzel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neetzel, C., Ohgai, T., Yanai, T. et al. Uniaxial magnetization performance of Co-Al2O3 nano-composite films electrochemically synthesized from acidic aqueous solution. J Solid State Electrochem 20, 1665–1672 (2016). https://doi.org/10.1007/s10008-016-3175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3175-x

Keywords

Navigation