Skip to main content

Advertisement

Log in

Synergistic electrocatalytic activity of a spinel ZnCo2O4/reduced graphene oxide hybrid towards oxygen reduction reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The non-precious metal catalysts and their hybrids have drawn a substantial attention towards the energy conversion and storage application. In this report, we have demonstrated the electrocatalytic activity of a hybrid comprising of ZnCo2O4 (ZCO) spheres and reduced graphene oxide (RGO) in an alkaline medium consisting of 0.1 M KOH solution which showed an onset potential of −0.02 V vs. Ag/AgCl and reduction peak at −0.22 V vs. Ag/AgCl, depicting its impressive catalytic activity towards oxygen reduction reaction (ORR) and thus having the potential to be used as a high-performance cathode catalyst in a typical fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Silveira Firmiano EG, Rabelo AC, Dalmaschio CJ, Pinheiro AN, Pereira EC, Schreiner WH, Leite ER (2014) Adv Energy Mater 4:1301380

    Article  Google Scholar 

  2. Kennedy T, Mullane E, Geaney H, Osiak M, O’Dwyer C, Ryan KM (2014) Nano Lett 14:716–723

    Article  CAS  Google Scholar 

  3. Otaegui L, Rodriguez-Martinez LM, Wang L, Laresgoiti A, Tsukamoto H, Han MH, Tsai CL, Laresgoiti I, López CM, Rojo T (2014) J Power Sources 247:749–755

    Article  CAS  Google Scholar 

  4. Tsuchida R, Hiraiwa S, Tsukamoto A, Washio M, Oshima A (2014) Fuel Cells 14:284–290

    Article  CAS  Google Scholar 

  5. Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y (2014) Science 345:542–546

    Article  CAS  Google Scholar 

  6. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) Electrochim Acta 53:4937–4951

    Article  CAS  Google Scholar 

  7. Fofana D, Natarajan SK, Hamelin J, Benard P (2014) Energy 64:398–403

    Article  CAS  Google Scholar 

  8. Kimiaie N, Wedlich K, Hehemann M, Lambertz R, Muller M, Korte C, Stolten D (2014) Energy Environ Sci 7:3013–3025

    Article  CAS  Google Scholar 

  9. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Nat Chem 3:546–550

    Article  CAS  Google Scholar 

  10. Song C, Zhang J (2008) In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers. Springer, London, pp 89–134

    Chapter  Google Scholar 

  11. Baranton S, Lankiang S, Coutanceau C (2014) Meet Abstr MA2014-02:1512

  12. Brouzgou A, Song SQ, Tsiakaras P (2012) Appl Catal B Environ 127:371–388

    Article  CAS  Google Scholar 

  13. Wang B (2005) J Power Sources 152:1–15

    Article  CAS  Google Scholar 

  14. Patel PP, Datta MK, Jampani Hanumantha P, Kadakia KS, Kumta PN (2014) Meet Abstr MA2014-01: 15

  15. Liu ZQ, Xu QZ, Wang JY, Li N, Guo SH, Su YZ, Wang HJ, Zhang JH, Chen S (2013) Int J Hydrog Energy 38:6657–6662

    Article  CAS  Google Scholar 

  16. Tylus U, Jia Q, Strickland K, Ramaswamy N, Serov A, Atanassov P, Mukerjee S (2014) J Phys Chem C 118:8999–9008

    Article  CAS  Google Scholar 

  17. Chao S, Bai Z, Cui Q, Yan H, Wang K, Yang L (2015) Carbon 82:77–86

    Article  CAS  Google Scholar 

  18. Ratha S, Simbeck AJ, Late DJ, Nayak SK, Rout CS (2014) Appl Phys Lett 105:243502

    Article  Google Scholar 

  19. Rout CS, Khare R, Kashid RV, Joag DS, More MA, Lanzillo NA, Washington M, Nayak SK, Late DJ (2014) Eur J Inorg Chem 2014:5331–5336

    Article  CAS  Google Scholar 

  20. Rout CS, Joshi PD, Kashid RV, Joag DS, More MA, Simbeck AJ, Washington M, Nayak SK, Late DJ (2014) Appl Phys Lett 105:043109-(1-5)

  21. Rout CS, Kim BH, Xu X, Yang J, Jeong HY, Odkhuu D, Park N, Cho J, Shin HS (2013) J Am Chem Soc 135:8720–8725

    Article  CAS  Google Scholar 

  22. Kozawa D, Kumar R, Carvalho A, Kumar Amara K, Zhao W, Wang S, Toh M, Ribeiro RM, Castro Neto AH, Matsuda K, Eda G (2014) Nat Commun 5:4543

    Article  CAS  Google Scholar 

  23. Ugeda MM, Bradley AJ, Shi SF, da Jornada FH, Zhang Y, Qiu DY, Ruan W, Mo SK, Hussain Z, Shen ZX, Wang F, Louie SG, Crommie MF (2014) Nat Mater 13:1091–1095

    Article  CAS  Google Scholar 

  24. Deng J, Ren P, Deng D, Yu L, Yang F, Bao X (2014) Energy Envron Sci 7:1919–1923

    Article  CAS  Google Scholar 

  25. Xiang Z, Xue Y, Cao D, Huang L, Chen JF, Dai L (2014) Angew Chemie Int Ed 53:2433–2437

    Article  CAS  Google Scholar 

  26. Rout CS, Joshi PD, Kashid RV, Joag DS, More MA, Simbeck AJ, Washington M, Nayak SK, Late DJ (2013) Sci Rep 3:3282

    Article  Google Scholar 

  27. Yun S, Hagfeldt A, Ma T (2014) Adv Mater 26:6210–6237

    Article  CAS  Google Scholar 

  28. Beliatis MJ, Gandhi KK, Rozanski LJ, Rhodes R, McCafferty L, Alenezi MR, Alshammari AS, Mills CA, Jayawardena KDGI, Henley SJ, Silva SRP (2014) Adv Mater 26:2078–2083

    Article  CAS  Google Scholar 

  29. Ratha S, Rout CS (2013) ACS Appl Mater Interfaces 5:11427–11433

    Article  CAS  Google Scholar 

  30. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Science 347:1246501

    Article  Google Scholar 

  31. Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A (2014) Nat Phot 8:899–907

    Article  CAS  Google Scholar 

  32. Julkapli NM, Bagheri S (2015) Int J Hydrog Energy 40:948–979

    Article  CAS  Google Scholar 

  33. Meyer J, Kidambi PR, Bayer BC, Weijtens C, Kuhn A, Centeno A, Pesquera A, Zurutuza A, Robertson J, Hofmann S (2014) Sci Rep 4:5380

    CAS  Google Scholar 

  34. Chu K, Jia C (2014) Phys Status Solidi 211:184–190

    Article  CAS  Google Scholar 

  35. Jiang L, Lu X, Zheng X (2014) J Mater Sci Mater Electron 25:174–180

    Article  CAS  Google Scholar 

  36. Tan C, Cao J, Khattak AM, Cai F, Jiang B, Yang G, Hu S (2014) J Power Sources 270:28–33

    Article  CAS  Google Scholar 

  37. Xia B, Yan Y, Wang X, Lou XW (2014) Mater Horiz 1:379–399

    Article  CAS  Google Scholar 

  38. Li D, Kaner RB (2008) Science 320:1170–1171

    Article  CAS  Google Scholar 

  39. Geim AK (2009) Science 324:1530–1534

    Article  CAS  Google Scholar 

  40. Galashev AE, Rakhmanova OR (2014) Physics-Uspekhi 57:970

    Article  CAS  Google Scholar 

  41. Ashish AG, Arunkumar P, Sarang S, Abhin S, Shaijumon MM (2014) in Meeting Abstracts; The Electrochemical Society, 444

  42. Boukhvalov DW, Son YW, Ruoff RS (2014) ACS Catal 4:2016–2021

    Article  CAS  Google Scholar 

  43. Xu J, Gao P, Zhao TS (2012) Energy Environ Sci 5:5333–5339

    Article  CAS  Google Scholar 

  44. Meng Y, Song W, Huang H, Ren Z, Chen SY, Suib SL (2014) J Am Chem Soc 136:11452–11464

    Article  CAS  Google Scholar 

  45. Rios E, Gautier JL, Poillerat G, Chartier P (1998) Electrochim Acta 44:1491–1497

    Article  CAS  Google Scholar 

  46. Jin C, Lu F, Cao X, Yang Z, Yang R (2013) J Mater Chem A 1:12170–12177

    Article  CAS  Google Scholar 

  47. Cao Y, Wei Z, He J, Zang J, Zhang Q, Zheng M, Dong Q (2012) Energy Environ Sci 5:9765–9768

    Article  CAS  Google Scholar 

  48. Lee DU, Kim BJ, Chen Z (2013) J Mater Chem A 1:4754–4762

    Article  CAS  Google Scholar 

  49. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Nat Mater 10:780–786

    Article  CAS  Google Scholar 

  50. Zhang G, Xia BY, Wang X, Lou XW (2014) Adv Mater 26:2408–2412

    Article  CAS  Google Scholar 

  51. Liang Y, Wang H, Diao P, Chang W, Hong G, Li Y, Gong M, Xie L, Zhou J, Wang J, Regier TZ, Wei F, Dai H (2012) J Am Chem Soc 134:15849–15857

    Article  CAS  Google Scholar 

  52. Kim TW, Woo MA, Regis M, Choi KS (2014) J Phys Chem Lett 5:2370–2374

    Article  CAS  Google Scholar 

  53. Sahu SC, Samantara AK, Dash A, Juluri RR, Sahu RK, Mishra BK, Jena BK (2013) Nano Res 6:635–643

    Article  CAS  Google Scholar 

  54. Sahu SC, Samantara AK, Satpati B, Bhattacharjee S, Jena BK (2013) Nanoscale 5:11265–11274

    Article  CAS  Google Scholar 

  55. Julien CM, Massot M (2003) J Phys Condens Matter 15:3151–3162

    Article  CAS  Google Scholar 

  56. Malavasi L, Galinetto P, Mozzati MC, Azzoni CB, Flor G (2002) Phys Chem Chem Phys 4:3876–3880

    Article  CAS  Google Scholar 

  57. Marinković Stanojević ZV, Romčević N, Stojanović B (2007) J Eur Ceram Soc 27:903–907

    Article  Google Scholar 

  58. Tortosa M, Manjón FJ, Mollar M, Marí B (2012) J Phys Chem Solids 73:1111–1115

    Article  CAS  Google Scholar 

  59. Windisch CF, Exarhos GJ, Owings RR (2004) J Appl Phys 95:5435–5442

    Article  CAS  Google Scholar 

  60. Venezuela P, Lazzeri M, Mauri F (2011) Phys Rev B 84:35433

    Article  Google Scholar 

  61. Lv X, Weng J (2013) Sci Rep 3:3285

    Google Scholar 

  62. Wu P, Lv H, Peng T, He D, Mu S (2014) Sci Rep 4:3968

    Google Scholar 

  63. Liu XW, Sun XF, Huang YX, Sheng GP, Zhou K, Zeng RJ, Dong F, Wang SG, Xu AW, Tong ZH, Yu HQ (2010) Water Res 44:5298–5305

    Article  CAS  Google Scholar 

  64. Wen Q, Wang S, Yan J, Cong L, Pan Z, Ren Y, Fan Z (2012) J Power Sources 216:187–191

    Article  CAS  Google Scholar 

  65. Su Y, Zhu Y, Yang X, Shen J, Lu J, Zhang X, Chen J, Li C (2013) Ind Eng Chem Res 52:6076–6082

    Article  CAS  Google Scholar 

  66. Pu Z, Liu Q, Tang C, Asiri AM, Qusti AH, Al-Youbi AO, Sun X (2014) J Power Sources 257:170–173

    Article  CAS  Google Scholar 

  67. Masa J, McAuley CB, Schuhmann W, Compton R (2014) Nano Res 7:71–78

    Article  CAS  Google Scholar 

  68. Samantara AK, Sahu SC, Ghosh A, Jena BK (2015) J Mater Chem A 3:16961–16970

    Article  CAS  Google Scholar 

  69. Meng H, Shen PK (2005) J Phys Chem B 109:22705–22709

    Article  CAS  Google Scholar 

  70. Durst J, Siebel A, Simon C, Hasche F, Herranz J, Gasteiger HA (2014) Energy Environ Sci 7:2255–2260

    Article  CAS  Google Scholar 

  71. Tammeveski K, Arulepp M, Tenno T, Ferrater C, Claret J (1997) Electrochim Acta 42:2961–2967

    Article  CAS  Google Scholar 

  72. Lee K, Ahmed MS, Jeon S (2015) J Power Sources 288:261–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AKS acknowledges CSIR for fellowship. Dr. B. K. Jena acknowledges funding support from MNRE, New Delhi, India (No. 102/87/2011-NT); BRNS, Mumbai, India (No. 2013/37P/67/BRNS); and CSIR, New Delhi, India (Young Scientist Award Project—YSP-2/2013, P-81-113). Dr. C.S. Rout thanks DST (Government of India) for the Ramanujan Fellowship. This work was supported by DST-SERB (Grant Nos. SR/S2/RJN 21/2012, SB/FTP/PS-065/2013) and UGC-UKIERI (Grant No. 2013-14/005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chandra Sekhar Rout or Bikash Kumar Jena.

Additional information

Satyajit Ratha and Aneeya K. Samantara contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

[The FESEM image, EDS spectrum, X-ray diffraction pattern and Raman spectra for ZCO sample; XPS of Urea treated RGO, ORR activity of RGO and ZCO]. (DOC 8702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratha, S., Samantara, A.K., Rout, C.S. et al. Synergistic electrocatalytic activity of a spinel ZnCo2O4/reduced graphene oxide hybrid towards oxygen reduction reaction. J Solid State Electrochem 20, 285–291 (2016). https://doi.org/10.1007/s10008-015-3035-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3035-0

Keywords

Navigation