Skip to main content
Log in

Complex electrochemical studies on silver-coated metallic implants for orthopaedic application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Silver grains were deposited by pulse current technique onto different implant materials—Ti6Al4V and CoCrMo alloys—that are commonly used in orthopaedic surgery. The electrochemical behaviour of the coatings and the silver ion release rate were investigated by polarization potentiodynamic and electrochemical impedance spectroscopy (EIS) methods over a period of several weeks in isotonic salt solution. For antimicrobial applications, it is very important to maintain a continuous and long-term release of silver ions. The corrosion properties of silver-coated different implant materials and the silver dissolution rate were compared. The open circuit potentials shifted to more positive values for both uncoated and coated substrate materials in 0.9 % sodium chloride solution. The silver modified implants possess more negative corrosion potentials than that of pure implants. The potentiodynamic curves revealed that the silver-modified implant materials have higher anodic and cathodic current densities compared to bare implant by almost one order of magnitude. The values of charge transfer resistance decreased in approximately 10 days for all silver-coated samples but after that, slightly changed due to the layer passivation. The morphology of the coatings was studied by scanning electron microscopy (SEM) micrographs and energy dispersive spectroscopy (EDX) measurements. To determine the silver ion concentration released from the silver-modified implant materials into physiological solution during different time of immersion, inductively coupled plasma mass spectroscopy (ICP-MS) method was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goshegera G, Hardes J et al (2004) Biomaterials 25:5547–5556

    Article  CAS  Google Scholar 

  2. von Eiff C, Proctor RA, Peters G (2001) Postgrad Med 110:63–64, 69–70, 73–76

  3. Arslan H, Celikkan H, Örnek N, Ozan O, Ersan E, Levent AM (2008) J Appl Electrochem 38:853–859

    Article  CAS  Google Scholar 

  4. Hodgson AWE, Mueller Y, Forster D, Virtanen S (2002) Electrochim Acta 47:1913–1923

    Article  CAS  Google Scholar 

  5. Tamilselvi S, Raman V, Rajendran N (2006) Electrochim Acta 52:839–846

    Article  CAS  Google Scholar 

  6. Ibris N, Mirza-Rosca JC (2002) J Electroanal Chem 526:53–62

    Article  CAS  Google Scholar 

  7. Aziz-Kerrzo M, Conroy KG, Fenelon AM, Farrell ST, Breslin CB (2001) Biomaterials 22:1531–1539

    Article  CAS  Google Scholar 

  8. Bosetti M, Massé A, Tobin E, Cannas M (2002) Biomaterials 23:887–892

    Article  CAS  Google Scholar 

  9. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Appl Environ Microbiol 74:2171–2178

    Article  CAS  Google Scholar 

  10. Jamuna-Thevi K, Bakar SA, Ibrahim S, Shahab N, Toff MRM (2011) Vacuum 86:235–241

    Article  CAS  Google Scholar 

  11. Schierholz JM, Lucasj LJ, Rump A (1998) J Hosp Infect 40:257–262

    Article  CAS  Google Scholar 

  12. Secinti KD, Ayten M, Kahilogullari G, Kaygusuz G, Ugur HC, Attar A (2008) J Clin Neurosci 15:434–439

    Article  Google Scholar 

  13. Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H et al (2007) Biomaterials 28:2869–2875

    Article  CAS  Google Scholar 

  14. Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M et al (2004) Biomaterials 25:5547–5556

    Article  CAS  Google Scholar 

  15. DeVasConCellos P, Bose S, Beyenal H, Bandyopadhyay A, Zirkle LG (2012) Mat Sci Eng C 32:1112–1120

    Article  CAS  Google Scholar 

  16. Fordham WR, Redmond S, Westerland A et al (2014) Surf Coat Tech 253:52–57

    Article  CAS  Google Scholar 

  17. Ocwieja M, Adamczyk Z, Morga M, Kubiak K (2015) J Colloid Interf Sci 445:205–212

    Article  CAS  Google Scholar 

  18. Fletcher A, Moriarty WL (1979) US 4155817 A

  19. Lakatos-Varsanyi M, Furko M, Pozman T (2011) Electrochim Acta 56:7787–7795

    Article  CAS  Google Scholar 

  20. Popov BN (2015) Corros Eng 6:239–287

    Article  Google Scholar 

  21. Oldfield JW (1988) Galv Corros ASTM STP 978:5–22

    Article  CAS  Google Scholar 

  22. Reclaru L, Lerf R, Eschler PY, Blatter A, Meyer JM (2002) Biomaterials 23:3479–3485

    Article  CAS  Google Scholar 

  23. Wagner CV, Traud WZ (1938) Elektrochem 44:391–454

    CAS  Google Scholar 

  24. Schneider M, Kremmer K, Lämmel C, Sempf K, Herrmenn M (2014) Corros Sci 80:191–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Furko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furko, M., Lakatos-Varsányi, M. & Balázsi, C. Complex electrochemical studies on silver-coated metallic implants for orthopaedic application. J Solid State Electrochem 20, 263–271 (2016). https://doi.org/10.1007/s10008-015-3026-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3026-1

Keywords

Navigation