Skip to main content
Log in

Electrochemistry and XPS of 2,7-dinitro-9-fluorenone immobilized on multi-walled carbon nanotubes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report that glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNTs) can be derivatized with 2,7-dinitro-9-fluorenone (2,7-NFN). The derivatization procedure involves simple immersion of the MWCNT-modified electrode in a solution containing 2,7-NFN. SEM images indicate that the MWCNTs form a twisted, three-dimensional array that remains attached to the GCE surface. Both electrochemical and spectroscopic measurements (XPS) indicate that 2,7-NFN is immobilized on the electrode, most probably by being trapped within the pockets of the mentioned three-dimensional array. The electrode with the immobilized 2,7-NFN is sufficiently stable to resist washing but allows both its manipulation and reduction to form the hydroxylamine derivative. This derivative can be oxidized to form a nitroso compound. Both the nitroso and hydroxylamine derivatives are also trapped within the MWCNT surface pockets. Furthermore, depending on the selected working potential, the nature of the encapsulated compound, i.e., nitro, nitroso, or hydroxylamine derivative and mixtures thereof, can be selected. All these redox pathways were verified by cyclic voltammetry and XPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iijima S, Ichihashi S (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  2. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  3. Tasis D, Tagnatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  4. Nugent JM, Santhanam KSV, Rubio A, Ajayan PM (2001) Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett 1:87–91

    Article  CAS  Google Scholar 

  5. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408–2409

    Article  CAS  Google Scholar 

  6. Luo H, Shi Z, Li N, Gu Z, Zhuang Q (2001) Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal Chem 73:915–920

    Article  CAS  Google Scholar 

  7. Wildgoose G, Banks C, Leventis H, Compton R (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152:187–214

    Article  CAS  Google Scholar 

  8. Wang L, Feng S, Zhao J, Zheng J, Wang Z, Li L, Zhu Z (2010) A facile method to modify carbon nanotubes with nitro/amino groups. Appl Surf Sci 256:6060–6064

    Article  CAS  Google Scholar 

  9. Heald C, Wildgoose G, Jiang L, Jones T, Compton RG (2004) Chemical derivatisation of multiwalled carbon nanotubes using diazonium salts. ChemPhysChem 5:1794–1799

    Article  CAS  Google Scholar 

  10. Wildgoose G, Wilkins S, Williams G, France R, Carnahan D, Jiang L, Jones T, Compton RG (2005) Graphite powder and multiwalled carbon nanotubes chemically modified with 4-nitrobenzylamine. ChemPhysChem 6:352–362

    Article  CAS  Google Scholar 

  11. Moscoso R, Carbajo J, López M, Núñez-Vergara LJ, Squella JA (2011) A simple derivatization of multiwalled carbon nanotubes with nitroaromatics in aqueous media: modification with nitroso/hydroxylamine groups. Electrochem Commun 13:217–220

    Article  CAS  Google Scholar 

  12. Moscoso R, Carbajo J, Squella JA (2014) Multiwalled carbon nanotubes modified electrodes with encapsulated 1,4-dihydro-pyridine-4-nitrobenzene substituted compounds. J Chil Chem Soc 59:2248–2251

    Article  Google Scholar 

  13. Moscoso R, Carbajo J, Squella JA (2014) 1,3-Dioxolane: a green solvent for the preparation of carbon nanotube-modified electrodes. Electrochem Commun 48:69–72

    Article  CAS  Google Scholar 

  14. Mano A, Kuhn A (1999) Immobilized nitro-fluorenone derivatives as electrocatalysts for NADH oxidation. J Electroanal Chem 477:79–88

    Article  CAS  Google Scholar 

  15. Lipińska ME, Rebelo SLH, Pereira MFR, Gomes JANF, Freire C, Figueiredo JL (2012) New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives. Carbon 50:3280–3294

    Article  Google Scholar 

  16. Saito R (2003) In: Yasuda E, Inagaki M, Kaneko K, Endo M, Oya A, Tanabe Y (Eds) Carbon alloys: novel concept to develod carbon science and technology. Elsevier, UK

  17. Nielsen JU, Esplandiu MJ, Kolb DM (2001) 4-Nitrothiophenol SAM on Au(111) Investigated by in Situ STM, Electrochemistry, and XPS. Langmuir 17:3454–3459

    Article  CAS  Google Scholar 

  18. Hueso JL, Espinós JP, Caballero A, Cotrino J, González-Elipe AR (2007) XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon 45:89–96

  19. Eng J Jr, Hubner IA, Barriocanal J, Opila RL, Doren DJ (2004) X-ray photoelectron spectroscopy of nitromethane adsorption products on Si(100): a model for N 1s core-level shifts in silicon oxynitride films. J Appl Phys 95:1963–1968

    Article  CAS  Google Scholar 

  20. Ortiz B, Saby C, Champagne GY, Belanger D (1998) Electrochemical modification of a carbon electrode using aromatic diazonium salts. 2. Electrochemistry of 4-nitrophenyl modified glassy carbon electrodes in aqueous media. J Electroanal Chem 455:75–81

    Article  CAS  Google Scholar 

  21. Finke B, Schröder K, Ohl A (2008) Surface Radical Detection on NH3-Plasma Treated Polymer Surfaces Using the Radical Scavenger NO. Plasma Process Polym 5:386–396

  22. Moraitis G, Špitalský Z, Ravani F, Siokou A, Galiotis C (2011) Electrochemical oxidation of multi-wall carbon nanotubes. Carbon 49:2702–2708

    Article  CAS  Google Scholar 

  23. Martínez MT, Callejas MA, Benito AM, Cochet M, Seeger T, Ansón A, Schreiber J, Gordon C, Marhic C, Chauvet O, Fierro JLG, Maser WK (2003) Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalization. Carbon 41:2247–2256

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support from FONDECYT project N° 1130160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Squella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urzúa, J., Carbajo, J., Yáñez, C. et al. Electrochemistry and XPS of 2,7-dinitro-9-fluorenone immobilized on multi-walled carbon nanotubes. J Solid State Electrochem 20, 1131–1137 (2016). https://doi.org/10.1007/s10008-015-2949-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2949-x

Keywords

Navigation