Skip to main content

Advertisement

Log in

Growth and electrochemical performance of porous NiMn2O4 nanosheets with high specific surface areas

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, porous NiMn2O4 nanosheets with large surface areas are successfully grown by a hydrothermal method and examined as electrodes for supercapacitors. Results have shown that the supercapacitor based on NiMn2O4 electrodes exhibits the highest specific capacitance of 1321.6 F g−1 at a scan rate of 2 A g−1, much higher than those of other supercapacitors made of metal oxides and composites. The NiMn2O4 supercapacitor also shows a good cycling behavior, only 6.5 % capacitance decay after 1500 cycles. The NiMn2O4 nanosheets possess a robust mechanical adhesion to Ni foam, which has been demonstrated by an ultrasonication test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan H, Qi L, Kushima A, Li J (2010) Science 330:1515–1520

    Article  CAS  Google Scholar 

  2. Zhu YW, Murali ST, Stoller MD, Cai WW, Ferrira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Science 24:1537–1541

    Article  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  4. Cheng FY, Liang J, Tao ZL, Chen J (2011) Adv Mater 23:1695–1615

    Article  CAS  Google Scholar 

  5. Luo YS, Luo JS, Jiang J, Zhou WW, Yang HP, Qi XY, Zhang H, Fan HJ, Yu YW, Li CM, Yu T (2012) Energy Environ Sci 5:6559–6566

    Article  CAS  Google Scholar 

  6. Shi Y, Guo B, Corr SA, Shi Q, Hu YS, Heier KR, Chen L, Seshadri R, Stucky GD (2009) Nano Lett 9:4215–4220

    Article  CAS  Google Scholar 

  7. Lai L, Yang H, Wang L, Teh BK, Zhong J, Chou H, Chen L, Chen W, Shen Z, Ruoff RS, Lin J (2012) ACS Nano 6:5941–5951

    Article  CAS  Google Scholar 

  8. Huang Y, Liang JJ, Chen S (2012) Small 8:1805–1834

    Article  CAS  Google Scholar 

  9. Yan T, Li RY, Yang TT, Li ZJ (2015) Electrochim Acta 152:530–537

    Article  Google Scholar 

  10. Zhao YM, Ling Liu L, Xu J, Yang J, Yan MM (2007) J Solid State Electrochem 11:449–449

    Article  Google Scholar 

  11. Yuan CZ, Yang L, Hou LR, Shen LF, Zhang XG, Lou XW (2012) Energy Environ Sci 5:7783–7787

    Google Scholar 

  12. Qi T, Jiang JJ, Chen HC, Wan HZ, Miao L, Zhang L (2013) Electrochim Acta 114:674–680

    Article  CAS  Google Scholar 

  13. Lv WM, Xiang JY, Wen FS, Jia ZY, Yang RL, Xu B, Yu DL, He JL, Liu ZY (2015) Electrochim Acta 153:49–54

    Article  CAS  Google Scholar 

  14. Wang Q, Wen ZH, Li JH, Hybrid A (2006) Adv Funct Mater 16:2141–2146

    Article  CAS  Google Scholar 

  15. Yan HL, Zhang DY, Xu JY, Lu Y, Liu YX, Qiu KW, Zhang YH, Luo YS (2014) Nanoscale Res Lett 9:424/1–3

    Google Scholar 

  16. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Adv Mater 24:5166–5180

    Article  CAS  Google Scholar 

  17. Wang GX, Liu H, Liu J, Qiao SZ, Lu GQM, Munroe P, Ahn H (2010) Adv Mater 22:4944–4948

    Article  CAS  Google Scholar 

  18. Ding SJ, Zhu T, Chen JS, Wang ZY, Yuan CL, Lou XW (2011) J Mater Chem 21:6602–6606

    Article  CAS  Google Scholar 

  19. Deng W, Sun Y, Su Q, Xie E, Lan W (2014) Mater Lett 137:124–127

    Article  CAS  Google Scholar 

  20. Zhong JH, Wang AL, Li GR, Wang JW, Ou YN, Tong YX (2012) J Mater Chem 22:5656–5665

    Article  CAS  Google Scholar 

  21. Lu XH, Zhai T, Zhang XH, Shen YQ, Yuan LY, Hu B, Gong L, Chen J, Gao YH, Zhou J, Tong YX, Wang ZL (2012) Adv Mater 24:938–944

    Article  CAS  Google Scholar 

  22. Ghodbane O, Pacal JL, Fraisse B, Favier F (2010) ACS Appl Mater Interfaces 2:3493–3505

    Article  CAS  Google Scholar 

  23. Vidyadharan B, Misnon II, Radhiyah AA, Padmasree KP, Yusoff MM, Jose R (2014) J Mater Chem A 2:6578–6588

    Article  Google Scholar 

  24. Xing JC, Zhu YL, Zhou QW, Zheng XD, Jiao QJ (2014) Electrochim Acta 136:550–556

    Article  CAS  Google Scholar 

  25. Luo L, Cui RR, Qiao H, Chen K, Fei YQ, Li DW, Pang ZY, Liu K, Wei QF (2014) Electrochim Acta 144:85–91

    Article  CAS  Google Scholar 

  26. Cai WH, Lai T, Dai WL, Ye JS (2014) J Power Sources 255:170–178

    Article  CAS  Google Scholar 

  27. Kuo SL, Lee JF, Wu NL (2007) J Electrochem Soc 154:A34–A38

    Article  CAS  Google Scholar 

  28. Davis M, Gümeci C, Black B, Korzeniewski C (2012) RSC Adv 2:2061–2066

    Article  CAS  Google Scholar 

  29. Gomez J, Kalu EE (2013) J Power Sources 230:218–224

    Article  CAS  Google Scholar 

  30. Krishnan SG, Reddy MV, Harilal M, Radhiyah AA, Vidyadharan B, Misnon II, Rahim MHA, Ismail J, Jose R (2015) Electrochim Acta 161:312–321

    Article  CAS  Google Scholar 

  31. Courtel FM, Duncan H, Lebdeh YA, Davidson IJ (2011) J Mater Chem 21:10206–10214

    Article  CAS  Google Scholar 

  32. Uvarov V, Popov I (2013) Mater Charact 85:111–123

    Article  CAS  Google Scholar 

  33. Misnon II, Aziz RA, Zain NKM, Vidyadharan B, Krishnan SG, Jose R (2014) Mater Res Bull 57:221–230

    Article  CAS  Google Scholar 

  34. Zhang DY, Yan HL, Lu Y, Qiu KW, Cheng CW, Tang CC, Luo YS (2014) Nanoscale Res Lett 9:139–145

    Article  CAS  Google Scholar 

  35. Kim CH, Kim BH (2015) J Power Sources 274:512–520

    Article  CAS  Google Scholar 

  36. Ray RS, Sarma B, Jurovitzki AL, Misra M (2015) Chem Eng J 260:671–683

    Article  CAS  Google Scholar 

  37. Yu WD, Lin WR, Shao XF, Hu ZX, Li RC, Yuan DS (2014) J Power Sources 272:137–143

    Article  CAS  Google Scholar 

  38. Gu L, Wang YW, Lu R, Wang W, Peng XS, Sha J (2015) J Power Sources 273:479–485

    Article  CAS  Google Scholar 

  39. Zhang M, Guo SH, Zheng L, Zhang GN, Hao ZP, Kang LP, Liu ZH (2013) Electrochim Acta 87:546–553

    Article  CAS  Google Scholar 

  40. Nan HH, Ma WQ, Gu ZX, Geng BY, Zhang XJ (2015) RSC Adv 5:24607–24614

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Nos. U1304108 and U1204501), the Science and Technology Key Projects of Education Department Henan Province (No. 13A430758), the Natural Scientific Foundation of Hunan Province (No. 13JJ4080), and the Young Backbone Teacher of Xinyang Normal University (No. 2013GGJS-18). The authors are indebted to Dr D. L. Xu and Y. X. Liu for their technical assistance and kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsong Luo.

Additional information

Hailong Yan and Tong Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 92.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Li, T., Qiu, K. et al. Growth and electrochemical performance of porous NiMn2O4 nanosheets with high specific surface areas. J Solid State Electrochem 19, 3169–3175 (2015). https://doi.org/10.1007/s10008-015-2946-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2946-0

Keywords

Navigation