Skip to main content
Log in

Preparation and electrochemical properties of SnO2-Sb-Ni-Ce oxide anode for phenol oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel Ni-Ce co-doped SnO2-Sb anode with macroporous titanium sheet as substrate (mp-Ti/SnO2-Sb-Ni-Ce anode) was prepared by modified sol–gel method. The surface morphology, the crystal structure, and the valence of the dopants were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. In addition, cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and accelerated life test were also carried out to study the electrochemical properties and stability of the anodes. The results indicated that mp-Ti/SnO2-Sb-Ni-Ce anode possessed a compact and uniform surface and a longer service life than other modified SnO2 anodes. Electrocatalytic oxidation of phenol was studied in a constant current density of 10 mA cm−2 at 25 °C to evaluate the application potential of the electrode. Effects of current density and initial pH value on phenol degradation were studied. The co-doping of Ni-Ce significantly enhanced the degradation of phenol and the total organic carbon (TOC) removal on the anode, which might be attributed to the improved generation of reactive oxygen species (ROS) in the solution and the indirect oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Saeed M, Ilyas M (2013) Oxidative removal of phenol from water catalyzed by nickel hydroxide. Appl Catal B Environ 129:247–254

    Article  CAS  Google Scholar 

  2. Gardziella A, Pilato LA, Knop A (2000) Phenolic resins: chemistry, applications, standardization, safety and ecology. Springer

  3. Knop A, Pilato LA (1985) Phenolic resins: chemistry, applications and performance: future directions. Springer, Berlin

    Google Scholar 

  4. Comninellis C, Nerini A, Eugenii K (1995) Anodic-oxidation of phenol in the presence of NaCl for waste-water treatment. J Appl Electrochem 25:23–28

    Article  CAS  Google Scholar 

  5. Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340

    Article  CAS  Google Scholar 

  6. Simond O, Schaller V, Comninellis C (1997) Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim Acta 42:2009–2012

    Article  CAS  Google Scholar 

  7. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    Article  CAS  Google Scholar 

  8. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862

    Article  CAS  Google Scholar 

  9. Rocha JHB, Gomes MMS, Santos EVD, Moura ECMD, Silva DRD, Quiroz MA, Martínez-Huitle CA (2014) Electrochemical degradation of Novacron yellow C-RG using boron-doped diamond and platinum anodes: direct and indirect oxidation. Electrochim Acta 140:419–426

    Article  CAS  Google Scholar 

  10. Yang SY, Kim D, Park H (2014) Shift of the reactive species in the Sb-SnO2-electrocatalyzed inactivation of E-coli and degradation of phenol: effects of nickel doping and electrolytes. Environ Sci Technol 48:2877–2884

    Article  CAS  Google Scholar 

  11. Niu JF, Bao YP, Li Y, Chai Z (2013) Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2-Sb electrodes. Chemosphere 92:1571–1577

    Article  CAS  Google Scholar 

  12. Vallejo M, San RMF, Ortiz I (2013) Quantitative assessment of the formation of polychlorinated derivatives, PCDD/Fs, in the electrochemical oxidation of 2-chlorophenol as function of the electrolyte type. Environ Sci Technol 47:12400–12408

    Article  CAS  Google Scholar 

  13. Chen XM, Chen GH, Gao FR, Yue PL (2003) High-performance Ti/BDD electrodes for pollutant oxidation. Environ Sci Technol 37:5021–5026

    Article  CAS  Google Scholar 

  14. Lin H, Niu JF, Xu JL, Li Y, Pan YH (2013) Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, reaction pathways, and energy cost evolution. Electrochim Acta 97:167–174

    Article  CAS  Google Scholar 

  15. Niu JF, Lin H, Xu JL, Wu H, Li YY (2012) Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce-doped modified porous nanocrystalline PbO2 film electrode. Environ Sci Technol 46:10191–10198

    CAS  Google Scholar 

  16. Shao D, Liang J, Cui X, Xu H, Yan W (2014) Electrochemical oxidation of lignin by two typical electrodes: Ti/Sb-SnO2 and Ti/PbO2. Chem Eng J 244:288–295

    Article  CAS  Google Scholar 

  17. Zhang L, Xu L, He J, Zhang J (2014) Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim Acta 117:192–201

    Article  CAS  Google Scholar 

  18. Yang SY, Choo YS, Kim S, Lim SK, Lee J, Park H (2012) Boosting the electrocatalytic activities of SnO2 electrodes for remediation of aqueous pollutants by doping with various metals. Appl Catal B Environ 111:317–325

    Article  Google Scholar 

  19. Liu Y, Liu HL, Ma J, Li JJ (2012) Preparation and electrochemical properties of Ce-Ru-SnO2 ternary oxide anode and electrochemical oxidation of nitrophenols. J Hazard Mater 213:222–229

    Article  Google Scholar 

  20. He DL, Mho SI (2004) Electrocatalytic reactions of phenolic compounds at ferric ion co-doped SnO2: Sb5+ electrodes. J Electroanal Chem 568:19–27

    Article  CAS  Google Scholar 

  21. Adams B, Tian M, Chen A (2009) Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochim Acta 54:1491–1498

    Article  CAS  Google Scholar 

  22. Feng YJ, Li XY (2003) Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res 37:2399–2407

    Article  CAS  Google Scholar 

  23. Cui YH, Feng YJ, Liu ZQ (2009) Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb-SnO2 electrodes. Electrochim Acta 54:4903–4909

    Article  CAS  Google Scholar 

  24. Feng YJ, Cui YH, Logan B, Liu ZQ (2008) Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol. Chemosphere 70:1629–1636

    Article  CAS  Google Scholar 

  25. Basiriparsa J, Abbasi M (2012) High-efficiency ozone generation via electrochemical oxidation of water using Ti anode coated with Ni-Sb-SnO2. J Solid State Electrochem 16:1011–1018

    Article  CAS  Google Scholar 

  26. Christensen PA, Zakaria K, Curtis TP (2012) Structure and activity of Ni- and Sb-doped SnO2 ozone anodes. Ozone Sci Eng 34:49–56

    Article  CAS  Google Scholar 

  27. Parsa JB, Abbasi M, Cornell A (2012) Improvement of the current efficiency of the Ti/Sn-Sb-Ni oxide electrode via carbon nanotubes for ozone generation. J Electrochem Soc 159:D265–D269

    Article  CAS  Google Scholar 

  28. Christensen PA, Imkum A (2011) The inhibition of ozone generation at Ni/Sb-SnO2 electrodes in high concentrations of dissolved O3. Ozone Sci Eng 33:389–395

    Article  CAS  Google Scholar 

  29. Cheng W, Yang M, Xie Y, Fang Z, Nan J, Tsang Pokeung E (2013) Electrochemical degradation of the antibiotic metronidazole in aqueous solution by the Ti/SnO2-Sb-Ce anode. Environ Technol 34:2977–2987

    Article  CAS  Google Scholar 

  30. Qin W, Xu L, Song J, Xing R, Song H (2013) Highly enhanced gas sensing properties of porous SnO2–CeO2 composite nanofibers prepared by electrospinning. Sensors Actuators B: Chem 185:231–237

    Article  CAS  Google Scholar 

  31. Lin H, Niu JF, Ding S, Zhang L (2012) Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2–Sb, Ti/SnO2–Sb/PbO2 and Ti/SnO2–Sb/MnO2 anodes. Water Res 46:2281–2289

    Article  CAS  Google Scholar 

  32. Rodrigues ECPE, Olivi P (2003) Preparation and characterization of Sb-doped SnO2 films with controlled stoichiometry from polymeric precursors. J Phys Chem Solids 64:1105–1112

    Article  CAS  Google Scholar 

  33. Christensen PA, Zakaria K, Christensen H, Yonar T (2013) The effect of Ni and Sb oxide precursors, and of Ni composition, synthesis conditions and operating parameters on the activity, selectivity and durability of Sb-doped SnO2 anodes modified with Ni. J Electrochem Soc 160:H405–H413

    Article  CAS  Google Scholar 

  34. Zhao HY, Gao JX, Zhao GH, Fan JQ, Wang YB, Wang YJ (2013) Fabrication of novel SnO2-Sb/carbon aerogel electrode for ultrasonic electrochemical oxidation of perfluorooctanoate with high catalytic efficiency. Appl Catal B Environ 136:278–286

    Article  Google Scholar 

  35. Cui X, Zhao GH, Lei YZ, Li HX, Li PQ, Liu MC (2009) Novel vertically aligned TiO2 nanotubes embedded with Sb-doped SnO2 electrode with high oxygen evolution potential and long service time. Mater Chem Phys 113:314–321

    Article  CAS  Google Scholar 

  36. Correa-Lozano B, Comninellis C, DeBattisti A (1997) Service life of Ti/SnO2-Sb2O5 anodes. J Appl Electrochem 27:970–974

    Article  CAS  Google Scholar 

  37. Costa CR, Montilla F, Morallón E, Olivi P (2010) Electrochemical oxidation of synthetic tannery wastewater in chloride-free aqueous media. J Hazard Mater 180:429–435

    Article  CAS  Google Scholar 

  38. Song S, Fan J, He Z, Zhan L, Liu Z, Chen J, Xu X (2010) Electrochemical degradation of azo dye C.I. Reactive red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochim Acta 55:3606–3613

    Article  CAS  Google Scholar 

  39. Li G, Wang Y, Chen Q (2013) Influence of fluoride-doped tin oxide interlayer on Ni–Sb–SnO2/Ti electrodes. J Solid State Electrochem 17:1303–1309

    Article  CAS  Google Scholar 

  40. Haines J, Leger JM (1997) X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: ffRelationships between structure types and implications for other rutile-type dioxides. Phys Rev B 55:11144

    Article  CAS  Google Scholar 

  41. Zhang Q, Xu H, Yan W (2012) Fabrication of a composite electrode: CdS decorated Sb-SnO2/TiO2-NTs for efficient photoelectrochemical reactivity. Electrochim Acta 61:64–72

    Article  CAS  Google Scholar 

  42. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J (2003) Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques. J Phys Chem B 107:5162–5167

    Article  CAS  Google Scholar 

  43. Hashimoto K, Matzuo K, Kominami H, Kera Y (1997) Cerium oxides incorporated into zeolite cavities and their reactivity. J Chem Soc Faraday Trans 93:3729–3732

    Article  CAS  Google Scholar 

  44. Haverkamp RG, Marshall AT, Cowie BCC (2011) Energy resolved XPS depth profile of (IrO2, RuO2, Sb2O5, SnO2) electrocatalyst powder to reveal core-shell nanoparticle structure. Surf Interface Anal 43:847–855

    Article  CAS  Google Scholar 

  45. Xu HQ, Li AP, Qi Q, Jiang W, Sun YM (2012) Electrochemical degradation of phenol on the La and Ru doped Ti/SnO2-Sb electrodes. Korean J Chem Eng 29:1178–1186

    Article  CAS  Google Scholar 

  46. Yi X, Fernando P, Eugenii K, James FH, Itamar W (2003) "Plugging into enzymes": nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881

    Article  Google Scholar 

  47. Zhou X, Ye Z, Hua X, Zou A, Dong Y (2010) Electrocatalytic activity and stability of Ti/IrO2+MnO2 anode in 0.5 M NaCl solution. J Solid State Electrochem 14:1213–1219

    Article  CAS  Google Scholar 

  48. Hou YY, Hu JM, Liu L, Zhang JQ, Cao CN (2006) Electrochim Acta 51:6258–6267

    Article  CAS  Google Scholar 

  49. Samet Y, Elaoud SC, Ammar S, Abdelhedi R (2006) Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes. J Hazard Mater 138:614–619

    Article  CAS  Google Scholar 

  50. Panizza M, Cerisola G (2008) Electrochemical degradation of methyl red using BDD and PbO2 anodes. Ind Eng Chem Res 47:6816–6820

    Article  CAS  Google Scholar 

  51. Li XY, Cui YH, Feng YJ, Xie ZM, Gu JD (2005) Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res 39:1972–1981

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51278006 and 51478014), Research Fund for the Doctoral Program of Higher Education of China (20111103110007), and The Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD20130311).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhirong Sun or Xiang Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3077 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zhang, H., Wei, X. et al. Preparation and electrochemical properties of SnO2-Sb-Ni-Ce oxide anode for phenol oxidation. J Solid State Electrochem 19, 2445–2456 (2015). https://doi.org/10.1007/s10008-015-2892-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2892-x

Keywords

Navigation