Skip to main content
Log in

Enhanced photovoltaic performance of photoanodes based on Eu-doped ZnO nanowire arrays for dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Eu-doped ZnO nanowire (NW) arrays were grown on fluorine-doped tin oxide (FTO) substrates with assistance of hexamethylenetetramine (HMTA) and polyethylenimine (PEI) through Mannich reactions and used as photoanodes for dye-sensitized solar cells (DSCs). Structural characterizations indicate the Eu ions have been incorporated into the ZnO crystalline lattice. An overall light-to-electricity conversion efficiency (η) of 2.64 % was achieved for the DSC based on the 6 % Eu-doped ZnO NW array under AM 1.5 G illumination, and this η was found to significantly increase compared with that of the DSC with undoped ZnO NW array as the photoanode (2.01 %). Meanwhile, the fill factor (FF) of the DSC was upgraded from 63.2 to 78 %. Furthermore, the enhanced electron injection and transport abilities of Eu-doped ZnO NW arrays based on the DSC were revealed by the incident photon-to-electron conversion efficiency (IPCE) spectrum. This research demonstrates an effective way to resolve the low efficiency of DSCs due to the FF drop as well as a great potential for the expanding practical application of rare earth metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’regan B, Grfitzeli M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Grätzel M (2004) J Photochem Photobiol A Chem 164:3–14

    Article  Google Scholar 

  3. Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H (1999) Science 285:692–698

    Article  CAS  Google Scholar 

  4. Grätzel M (2003) J Photochem Phot C: Photochem Rev 4:145–153

    Article  Google Scholar 

  5. Gregg BA (2003) J Phys Chem B 107:4688–4698

    Article  CAS  Google Scholar 

  6. Keis K, Magnusson E, Lindström H, Lindquist S-E, Hagfeldt A (2002) Sol Energy Mater Sol Cells 73:51–58

    Article  Google Scholar 

  7. Gratzel M (2001) Nature 414:338–344

    Article  CAS  Google Scholar 

  8. Grätzel M (2005) Inorg Chem 44:6841

    Article  Google Scholar 

  9. Schmidt-Mende L, MacManus-Driscoll JL (2007) Mater Today 10:40–48

    Article  CAS  Google Scholar 

  10. Zhang Q, Dandeneau CS (2009) Zhou X, Cao G. Adv Mater 21:4087–4108

    Article  CAS  Google Scholar 

  11. Xu F, Sun L (2011) Energy & Environ Sci 4:818–841

    Article  CAS  Google Scholar 

  12. Baskoutas S, Bester G (2010) J Phys Chem C 114:9301–9307

    Article  CAS  Google Scholar 

  13. He C-X, Lei B-X, Wang Y-F, Su C-Y, Fang Y-P, Kuang D-B (2010) Chemistry. A Eur J 16:8757–8761

    Article  CAS  Google Scholar 

  14. Shi Y, Zhu C, Wang L, Zhao C, Li W, Fung KK, Ma T, Hagfeldt A, Wang N (2013) Chem Mater 25:1000–1012

    Article  CAS  Google Scholar 

  15. Memarian N, Concina I, Braga A, Rozati SM, Vomiero A, Sberveglieri G (2011) Angew Chem 123:12529–12533

    Article  Google Scholar 

  16. Grätzel M (2009) Acc Chem Res 42:1788-

    Article  Google Scholar 

  17. Gonzalez-Valls I, Lira-Cantu M (2009) Energy & Environ Sci 2:19–34

    Article  CAS  Google Scholar 

  18. Jana A, Sujatha Devi P, Mitra A, Bandyopadhyay NR (2013) Mater Chem Phys 139:431–436

    Article  CAS  Google Scholar 

  19. Archana P, Gupta A, Yusoff MM, Jose R (2014) Phys Chem Chem Phys 16:7448–7454

    Article  CAS  Google Scholar 

  20. Archana P, Gupta A, Yusoff MM, Jose R (2014) Appl Phys Lett 105:153901

    Article  Google Scholar 

  21. Xu M, Da P, Wu H, Zhao D (2012) Zheng G. Nano Lett 12:1503–1508

    Article  CAS  Google Scholar 

  22. Wang D, Xing G, Gao M, Yang L, Yang J, Wu T (2011) J Phys Chem C 115:22729–22735

    Article  CAS  Google Scholar 

  23. Al Rifai SA, Kulnitskiy BA (2013) J Phys Chem Solids 74:1733–1738

    Article  CAS  Google Scholar 

  24. Li J-G, Wang X, Watanabe K, Ishigaki T (2006) J Phys Chem B 110:1121–1127

    Article  CAS  Google Scholar 

  25. Katsuki D, Sato T, Suzuki R, Nanai Y, Kimura S, Okuno T (2012) Applied Physics A 108:321–327

    Article  CAS  Google Scholar 

  26. Kar A, Patra A (2009) J Phys Chem C 113:4375–4380

    Article  CAS  Google Scholar 

  27. Du Y-P, Zhang Y-W, Sun L-D, Yan C-H (2008) J Phys Chem C 112:12234–12241

    Article  CAS  Google Scholar 

  28. Wang D-d, Yang J-h, Cao J, Lang J-h, Gao M, Liu X-y (2011) Chemical research in Chinese universities. 27: 174-176

  29. McPeak KM, Le TP, Britton NG, Nickolov ZS, Elabd YA, Baxter JB (2011) Langmuir ACS J Surf Colloids 27:3672–3677

    Article  CAS  Google Scholar 

  30. Pérez-Hernández G, Vega-Poot A, Pérez-Juárez I, Camacho JM, Arés O, Rejón V, Peña JL, Oskam G (2012) Sol Energy Mater Sol Cells 100:21–26

    Article  Google Scholar 

  31. Djurišić A, Leung Y, Tam K, Hsu Y, Ding L, Ge W, Zhong Y, Wong K, Chan W, Tam H (2007) Nanotechnology 18:095702

    Article  Google Scholar 

  32. Jung Y-I, Baek S-H, Park I-K (2013) Thin Solid Films 546:259–262

    Article  CAS  Google Scholar 

  33. Shanmugam N, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G (2014) Spectrochim Acta A Mol Biomol Spectrosc 118:557–563

    Article  CAS  Google Scholar 

  34. Kannadasan N, Shanmugam N, Cholan S, Sathishkumar K, Viruthagiri G, Poonguzhali R (2014) Mater Charact 97:37–46

    Article  CAS  Google Scholar 

  35. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  36. Baxter JB, Aydil ES (2006) Sol Energy Mater Sol Cells 90:607–622

    Article  CAS  Google Scholar 

  37. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nat Mater 4:455–459

    Article  CAS  Google Scholar 

  38. Baxter JB, Aydil ES (2005) Appl Phys Lett 86:053114

    Article  Google Scholar 

  39. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Adv Mater 13:113–116

    Article  CAS  Google Scholar 

  40. Guo M, Diao P, Wang X, Cai S (2005) J Solid State Chem 178:3210–3215

    Article  CAS  Google Scholar 

  41. Guo T, Chen Y, Liu L, Cheng Y, Zhang X, Li Q, Wei M, Ma B (2012) J Power Sources 201:408–412

    Article  CAS  Google Scholar 

  42. Patel J, Mighri F, Ajji A, Tiwari D, Chaudhuri TK (2014) Applied Physics A DOI 10.1007/s00339-014-8659-x

  43. Zhao J-X, Lu X-H, Zheng Y-Z, Bi S-Q, Tao X, Chen J-F, Zhou W (2013) Electrochem Commun 32:14–17

    Article  Google Scholar 

  44. Lü X, Mou X, Wu J, Zhang D, Zhang L, Huang F, Xu F, Huang S (2010) Adv Funct Mater 20:509–515

    Article  Google Scholar 

  45. Ma T, Akiyama M, Abe E, Imai I (2005) Nano Lett 5:2543–2547

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (No. 20176066). The authors also thank SN Engr. Long Chen of Jiangxi Risun Solar Energy Co., Ltd., for the JV and IPCE measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gan, M., Yang, Y. et al. Enhanced photovoltaic performance of photoanodes based on Eu-doped ZnO nanowire arrays for dye-sensitized solar cells. J Solid State Electrochem 19, 3059–3066 (2015). https://doi.org/10.1007/s10008-015-2886-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2886-8

Keywords

Navigation