Skip to main content
Log in

Simultaneous ellipsometric and chronoamperometric study of barrier aluminium oxide growth and dissolution in acetate buffer

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In situ ellipsometric and chronoamperometic measurements were applied simultaneously to monitor barrier oxide growth and dissolution on aluminium. The steady-state thickness prior to each potential step was determined by electrochemical impedance spectroscopy (EIS) for calibration of the transient data. The growth of the barrier oxide, following a positive potential step, was consistent with the Cabrera-Mott inverse square logarithmic growth law. About 20 % of the measured current resulted in barrier oxide growth. The oxide dissolution rate, following a negative potential step, was controlled by diffusion of aluminium ions into the test solution. The obtained dissolution rate was thus much smaller than the corresponding oxide growth rates. Oxide solubilities calculated from Fick’s second law, by using literature data for the diffusion coefficient of Al3+, were about two orders of magnitude larger than that obtainable from thermodynamic considerations. The methodology developed provides the kinetic and solubility data needed for improving the existing know-how about the growth and dissolution kinetics of the barrier oxide layer in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guntherschulze A, Betz H (1934) Z Phys 92:367–373

    Article  CAS  Google Scholar 

  2. Diggle JW, Downie TC, Goulding CW (1969) Chem Rev 69:365–405

    Article  CAS  Google Scholar 

  3. Verwey EJW (1935) Physica (A) 2:1059–1063

    CAS  Google Scholar 

  4. Vetter KJ (1971) Electrochim Acta 16:1923–1937

    Article  CAS  Google Scholar 

  5. Gudic S, Radosevic J, Krpan-Lisica D, Kliskic M (2001) Electrochim Acta 46:2515–2526

    Article  CAS  Google Scholar 

  6. Hasenay D, Seruga M (2007) J Appl Electrochem 37:1001–1008

    Article  CAS  Google Scholar 

  7. Lukac C, Lumsden JB, Smialowska S, Staehle RW (1975) J Electrochem Soc 122:1571–1579

    Article  CAS  Google Scholar 

  8. Greef B, Norman C (1985) J Electrochem Soc 132:2362–2369

    Article  CAS  Google Scholar 

  9. Gnoinski J, Grundwell F, Orchard S (1995) Mater Sci Forum 185–188:667–676

    Article  Google Scholar 

  10. Stein N, Rommelfangen M, Hody V, Johann L, Lecuire J (2002) Electrochim Acta 47:1811–1817

    Article  CAS  Google Scholar 

  11. Nisancioglu K (2007) Corrosion and protection of aluminium alloys in seawater. In: Féron D (ed) Corrosion behaviour and protection of copper and aluminium alloys in seawater, European Federation of Corrosion Publications No. 50. CRC Press, Boca Raton, pp 145–155

    Chapter  Google Scholar 

  12. Giskeødegård N, Blaijev O, Hubin A, Terryn H, Hunderi O, Nisancioglu K (2005) Phys Stat Sol (C) 2:3953–3957

    Article  Google Scholar 

  13. Cabrera N, Mott NF (1948–1949) Rep Prog Phys 12:163–184

  14. Ghez R (1973) J Chem Phys 58:1838–1843

    Article  CAS  Google Scholar 

  15. Azzam RMA, Bashara NM (1989) Ellipsometry and polarized light. North-Holland, Amsterdam

  16. Gils SV, Melendres C, Terryn H, Stijns E (2004) Thin Solid Films 455–456:742–746

    Article  Google Scholar 

  17. Gils SV, Melendres C, Terryn H (2003) Surf Interface Anal 35:387–394

    Article  Google Scholar 

  18. Palik ED (ed) (1998) Handbook of optical constants of solids, vol 2. Academic Press, Boston, p 769

    Google Scholar 

  19. Macdonald D, Urquidi-Macdonald M (1990) J Electrochem Soc 137:2395–2402

    Article  CAS  Google Scholar 

  20. Thompson GE (1997) Thin Solid Films 297:192–201

    Article  CAS  Google Scholar 

  21. Moon SM, Pyun SI (1998) Electrochim Acta 43:3117–3126

    Article  CAS  Google Scholar 

  22. Lohrengel MM (1993) Mater Sci Eng R11:243–294

    Article  CAS  Google Scholar 

  23. Macdonald DD, Rifaie MA, Engelhardt GR (2001) J Electrochem Soc 148:B343–B347

    Article  CAS  Google Scholar 

  24. Xu Y (1983) The growth mechanisms of anodic films on aluminium. PhD thesis, University of Manchester

  25. Siejka J, Ortega C (1977) J Electrochem Soc 124:883–891

    Article  CAS  Google Scholar 

  26. Våland T (1981) The behaviour of Al electrodes in aqueous solutions. PhD thesis, University of Oslo

  27. Nordlien J (1995) Naturally formed oxide film on magnesium and magnesium alloys. PhD thesis, Norwegian University of Science and Technology, Trondheim, Norway

  28. Armstrong RD, Edmondson K (1973) Electrochim Acta 18:937–943

    Article  CAS  Google Scholar 

  29. Bessone J, Mayer C, Jüttner K, Lorenz WJ (1983) Electrochim Acta 28:171–175

    Article  CAS  Google Scholar 

  30. Gudic S, Radosevic S, Kliskic M (1996) J Appl Electrochem 26:1027–1035

    Article  CAS  Google Scholar 

  31. Frers SE, Stefenel MM, Mayer C, Chierchie T, Radosevic S (1990) J Appl Electrochem 20:996–999

    Article  CAS  Google Scholar 

  32. Bessone J, Salinas D, Mayer C, Ebert M, Lorenz W (1992) Electrochim Acta 37:2283–2290

    Article  CAS  Google Scholar 

  33. Betova I, Bojinov M, Kinnunen P, Laitinen T, Pohjanne P, Saario T (2002) Electrochim Acta 47:2093–2107

    Article  CAS  Google Scholar 

  34. Vermilyea DA (1957) J Electrochem Soc 104:427–433

    Article  CAS  Google Scholar 

  35. Young L (1961) Anodic oxide films. Academic Press, New York

    Google Scholar 

  36. De Wit J, Lenderink H (1996) Electrochim Acta 41:1111–1119

    Article  Google Scholar 

  37. Giskeødegård NH, PhD thesis in progress. Norwegian University of Science and Technology

  38. Crank J (1975) The mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  39. Yuan-Hui L, Gregory S (1974) Geochim Cosmochim Acta 38:708–714

    Article  Google Scholar 

  40. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston

    Google Scholar 

  41. O’Sullivan JP, Wood GC (1970) Proc R Soc London Ser A 317:511–543

    Article  Google Scholar 

  42. Kim YS, Pyun SI, Moon SM, Kim JD (1996) Corros Sci 38:329–336

    Article  CAS  Google Scholar 

  43. Perrault GG (1979) J Electrochem Soc 126:199–204

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by The Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Nisancioglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giskeødegård, N.H., Hunderi, O. & Nisancioglu, K. Simultaneous ellipsometric and chronoamperometric study of barrier aluminium oxide growth and dissolution in acetate buffer. J Solid State Electrochem 19, 3473–3483 (2015). https://doi.org/10.1007/s10008-015-2878-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2878-8

Keywords

Navigation