Skip to main content
Log in

Electrochemical resonance under harmonic current perturbations and chaotic potential perturbations

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The resonating properties of the electrochemical interface are studied under harmonic perturbations in galvanostatic control and under chaotic perturbations in potentiostatic control. The resonance conditions in galvanostatic control are derived analytically and explored numerically. The theoretical findings are confirmed experimentally for the Ni | 1 M H2SO4 system. The implementation of a Rössler and a Chua chaotic perturbation to an electrochemical resonator is explored numerically. It is shown that the electrochemical resonator acts effectively as a band pass filter thus enhancing the periodicity of the chaotic input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Karantonis A, Karaoulanis D (2011) Conditions of electrochemical resonance under potentiostatic control. Electrochim Acta 56:4119–4125

    Article  CAS  Google Scholar 

  2. Karantonis A, Karaoulanis D (2012) Electrical resonance and antiresonance of the electrochemical interface under potentiostatic control: theoretical considerations. Electrochim Acta 78:244–250

    Article  CAS  Google Scholar 

  3. Rotstein HG (2013) Preferred frequency responses to oscillatory inputs in an electrochemical cell model: linear amplitude and phase resonance. Phys Rev E 88:062913

    Article  Google Scholar 

  4. Berthier F, Diard JP, Le Gorrec B, Montella C (1998) Discontinuous immitance due to a saddle node bifurcation I: 1-, 2- and 3-part immitance diagrams. J Electroanal Chem 458:231–240

    Article  CAS  Google Scholar 

  5. Berthier F, Diard JP, Montella C (1999) Hopf bifurcation and sign of the transfer resistance. Electrochim Acta 44:2397–2404

    Article  CAS  Google Scholar 

  6. Koper MTM (1992) The theory of electrochemical instabilities. Electrochim Acta 37:1771–1778

    Article  CAS  Google Scholar 

  7. Koper MTM (1996) Stability study and categorization of electrochemical oscillators by impedance spectroscopy. J Electroanal Chem 409:175–182

    Article  Google Scholar 

  8. Kiss IZ, Gáspár V, Nyikos K (1998) Stability analysis of the oscillatory electrodissolution of copper with impedance spectroscopy. J Phys Chem B 102:909–914

    Article  CAS  Google Scholar 

  9. Kiss IZ, Hudson JL, Santos G, Parmananda P (2003) Experiments on coherence resonance: noisy precursors to Hopf bifurcations. Phys Rev E 67:035201

    Article  Google Scholar 

  10. Santos G, Rivera M, Parmananda P (2004) Experimental evidence of coexisting periodic stochastic resonance and coherence resonance phenomena. Phys Rev Lett 92:230–601

    Google Scholar 

  11. Santos G, Rivera M, Escalona J, Parmananda P (2008) Interaction of noise with excitable dynamics. Phys Trans Royal Soc A 366:369–380

    Article  Google Scholar 

  12. Karantonis A, Bourbos E, Koutsaftis D (2010) Electrochemical resonance: frequency response analysis of the electrodissolution of copper in trifluoroacetic acid close to dynamic instabilities. Chem Phys Lett 490:69–71

    Article  CAS  Google Scholar 

  13. Karantonis A, Bourbos E, Karaoulanis D (2013) Experiments on electrical resonance and antiresonance of the electrochemical interface under potentiostatic control. Electrochim Acta 87:912–917

    Article  CAS  Google Scholar 

  14. Doss KSG, Deshmukh D (1976) Electrochemical potential oscillations: The nickel-sulphuric acid system. J Electroanal Chem 70:141–156

    Article  CAS  Google Scholar 

  15. Haim D, Lev O, Pismen LM, Sheintuch M (1992) Modeling periodic and chaotic dynamics in anodic nickel dissolution. J Phys Chem 96:2672–2681

    Article  Google Scholar 

  16. Kiss IZ, Pelster LN, Wickramasinghe M, Yablonsky GS (2009) Frequency of negative differential resistance electrochemical oscillators: theory and experiments. Phys Chem Chem Phys 11:5720–5728

    Article  CAS  Google Scholar 

  17. Koper M, Sluyters JH (1993) A mathematical model for current oscillations at the active-passive transition in metal electrodissolution. J Electroanal Chem 347:31–48

    Article  CAS  Google Scholar 

  18. Rössler OE (1976) An equation for continuous chaos. Phys Lett 57A:397–398

    Article  Google Scholar 

  19. Chua LO, Komuro M, Matsumoto T (1986) The double scroll family. IEEE Trans Circ Syst 33:1073–1118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis Karantonis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaoulanis, D., Chryssafidis, P. & Karantonis, A. Electrochemical resonance under harmonic current perturbations and chaotic potential perturbations. J Solid State Electrochem 19, 3277–3286 (2015). https://doi.org/10.1007/s10008-015-2794-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2794-y

Keywords

Navigation