Skip to main content

Advertisement

Log in

Amphiphilic carbonaceous material-based hierarchical porous carbon aerogels for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Novel hierarchical porous carbon aerogels (PCAs) derived from amphiphilic carbonaceous material (ACM) have been mass-prepared via a facile solvent exchange induced self-assembly process and subsequent carbonization and KOH activation. The resulting products are stacked up by highly interconnected carbon nanoparticles with a certain amount of micropores and mesopores, which aggregate to build a three-dimensional macroporous architecture. The hierarchical porous structure facilitates fast ion transportation inside the electrode simultaneously preserving efficient ion surface electrochemical reactions. Capacitive and rate performances were evaluated by fabricating symmetric capacitors with both aqueous and organic electrolytes. The PCA-0.5 and PCA-1.0 electrodes exhibit superior specific capacitances of 261.2 and 227.9 F g−1 at a current density of 0.05 A g−1 in 6 M KOH electrolyte, and still remain 145.5 and 175.4 F g−1 as the current density increases to 100 A g−1, respectively. Remarkably, the PCA-0.5 and PCA-1.0 electrodes show stable cycle durability with a slight capacitance loss of 8.2 and 11.2 % after 5000 cycles at 1 A g−1, respectively. Furthermore, in organic electrolyte system, the PCA-1.0 electrode manifests an outstanding capacitance of 155.4 F g−1 at a current density of 0.05 A g−1. The encouraging results demonstrate that PCAs are a sort of promising and competitive supercapacitors electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  2. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Science 332:1537–1541

    Article  CAS  Google Scholar 

  3. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  4. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  5. Lee SW, Gallant BM, Byon HR, Hammond PT, Shao-Horn Y (2011) Energy Environ Sci 4:1972–1985

    Article  CAS  Google Scholar 

  6. Kotz R, Carlen M (2000) Electrochem Acta 45:2483–2498

    Article  CAS  Google Scholar 

  7. Chen MD, Kang XY, Wumaier T, Dou JQ, Gao B, Han Y, Xu GQ, Liu ZQ, Zhang L (2012) J Solid State Electrochem 17:1005–1012

    Article  Google Scholar 

  8. Lv YY, Zhang F, Dou YQ, Zhai YP, Wang JX, Liu HJ, Xia YY, Tu B, Zhao DY (2012) J Mater Chem 22:93–99

    Article  CAS  Google Scholar 

  9. Jiang HL, Liu B, Lan YQ, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) J Am Chem Soc 133:11854–11857

    Article  CAS  Google Scholar 

  10. Chen Z, Weng D, Sohn H, Cai M, Lu YF (2012) RSC Adv 2:1755–1758

    Article  CAS  Google Scholar 

  11. Liu D, Shen J, Liu NP, Yang HY, Du A (2013) Electrochim Acta 89:571–576

    Article  CAS  Google Scholar 

  12. Pröbstle H, Wiener M, Fricke J (2003) J Porous Mater 10:213–222

    Article  Google Scholar 

  13. Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Energy Environ Sci 4:656–667

    Article  CAS  Google Scholar 

  14. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chem Int Ed Engl 47:373–376

    Article  CAS  Google Scholar 

  15. Halama A, Szubzda B, Pasciak G (2010) Electrochim Acta 55:7501–7505

    Article  CAS  Google Scholar 

  16. Li J, Wang XY, Huang QH, Gamboa S, Sebastian PJ (2006) J Power Sources 158:784–788

    Article  CAS  Google Scholar 

  17. Tateishi D, Esumi K, Honda H, Oda H (1992) Carbon 30:942–944

    Article  CAS  Google Scholar 

  18. Wang J, Chen MM, Wang CY, Wang JZ, Zheng JM (2011) J Power Sources 196:550–558

    Article  CAS  Google Scholar 

  19. Biniak S, Szymanski G, Siedlewski J, Swiatkowski A (1997) Carbon 35:1799–1810

    Article  CAS  Google Scholar 

  20. Chen J, Yao BW, Li C, Shi GQ (2013) Carbon 64:225–229

    Article  CAS  Google Scholar 

  21. Wang JB, Yang XQ, Wu DC, Fu R, Dresselhaus MS, Dresselhaus G (2008) J Power Sources 185:589–594

    Article  CAS  Google Scholar 

  22. Yan J, Xiao Y, Ning GQ, Wei T, Fan ZJ (2013) RSC Adv 3:2566–2571

    Article  CAS  Google Scholar 

  23. Hou Y, Cheng YW, Hobson T, Liu J (2010) Nano Lett 10:2727–2733

    Article  CAS  Google Scholar 

  24. Wang JC, Kaskel S (2012) J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  25. Mi J, Wang XR, Fan RJ, Qu WH, Li WC (2012) Energy Fuels 26:5321–5329

    Article  CAS  Google Scholar 

  26. Choi WS, Shim WG, Ryu WD, Hwang MJ, Moon H (2012) Microporous Mesoporous Mater 155:274

    Article  CAS  Google Scholar 

  27. He X, Li R, Qiu J, Xie K, Ling P, Yu M, Zhang X, Zheng M (2012) Carbon 50:4911

    Article  CAS  Google Scholar 

  28. Wang J, Yang X, Wu D, Fu R, Dresselhaus MS, Dresselhaus G (2008) J Power Sources 185:589

    Article  CAS  Google Scholar 

  29. Xu B, Wu F, Su Y, Cao G, Chen S, Zhou Z, Yang Y (2008) Electrochim Acta 53:7730

    Article  CAS  Google Scholar 

  30. Barranco V, Lillo-Rodenas MA, Linares-Solano A, Oya A, Pico F, Ibanez J, Agullo-Rueda F, Amarilla JM, Rojo JM (2010) J Phys Chem 114:10302

    Article  CAS  Google Scholar 

  31. Lei Z, Lu L, Zhao XS (2012) Energy Environ Sci 5:6391

    Article  CAS  Google Scholar 

  32. Wang Q, Yan J, Wang YB, Ning GQ, Fan ZJ, Wei T, Cheng J, Zhang ML, Jing XY (2013) Carbon 52:209–218

    Article  CAS  Google Scholar 

  33. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Adv Funct Mater 11:387–392

    Article  CAS  Google Scholar 

  34. Liu X, Juan L, Zhan L, Tang L, Wang Y, Qiao W (2010) J Electroanal Chem 642:75–81

    Article  CAS  Google Scholar 

  35. Ue M (1994) J Electrochem Soc 141:3336–3342

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 51372168) and the Key Project of Natural Science Foundation of Tianjin City of China (No. 12JCZDJC27000)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Zhang, C., Wang, C. et al. Amphiphilic carbonaceous material-based hierarchical porous carbon aerogels for supercapacitors. J Solid State Electrochem 19, 619–627 (2015). https://doi.org/10.1007/s10008-014-2638-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2638-1

Keyword

Navigation