Skip to main content

Advertisement

Log in

Surfactant effect on synthesis of core-shell LiFePO4/C cathode materials for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanospherical LiFePO4 particle with a uniform carbon coating layer (core-shell structure expressed as LiFePO4/C) in the presence of both low-cost FeOOH as iron resource and polyoxyethylene sorbitan monopalmitate (Tween 40) as surfactant is synthesized via a solid–liquid reaction milling method consisting of high-energy milling and pyrolysis steps. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (SEM), and transmission electron microscopy (TEM) are used for structure, morphology, and composition characterization. Both XRD and FTIR results confirm the existence of interactions between surfactant molecules and precursor, which can benefit the formation of the core-shell structure with an average particle size of about 200 nm and a high tap density of 1.7 g cm−3. The electrochemical properties of as-prepared LiFePO4/C as cathode material are investigated by electrochemical impedance spectroscopy (EIS), charge–discharge, and cycling tests. The results show that the LiFePO4/C can achieve high discharge capacities of 163.6 and 131.3 mAh g−1 under 0.1 °C at room temperature (25 °C) and sub-zero temperature (−20 °C), respectively, due to its improved conductivity. In addition, the material also shows an excellent cycling performance with capacity retention of 98.8 % (0.1 °C) after 120 cycles at 25 °C and 102.9 mAh g−1 at the ends of the 200th cycle corresponding to a fading of 0.01 % per cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dimesso L, Forster C, Jaegermann W, Khanderi JP, Tempel H, Popp A, Engstler J, Schneider JJ, Sarapulova A, Mikhailova D, Schmitt LA, Oswald S, Ehrenberg H (2012) Chem Soc Rev 41:5068–5080

    Article  CAS  Google Scholar 

  2. Cheng FY, Liang J, Tao ZL, Chen J (2011) Adv Mater 23:1695–1715

    Article  CAS  Google Scholar 

  3. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1609–1613

    Article  CAS  Google Scholar 

  4. Chung SY, Chiang YM (2003) Electrochem Solid-State Lett 6:A278–A281

    Article  CAS  Google Scholar 

  5. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Solid State Ionics 148:45–51

    Article  CAS  Google Scholar 

  6. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nat Mater 3:147–152

    Article  CAS  Google Scholar 

  7. Kobayashi G, Nishimura SI, Park MS, Kanno R, Yashima M, Ida T, Yamada A (2009) Adv Funct Mater 19:395–403

    Article  CAS  Google Scholar 

  8. Lv DP, Wen W, Huang XK, Bai JY, Mi JX, Wu SQ, Yang Y (2011) J Mater Chem 21:9506–9512

    Article  CAS  Google Scholar 

  9. Liivat A, Thomas JO (2010) Comput Mater Sci 50:191–197

    Article  CAS  Google Scholar 

  10. Li HQ, Zhou HS (2012) Chem Commun 48:1201–1207

    Article  CAS  Google Scholar 

  11. Zheng ZM, Wang Y, Zhang A, Zhang TR, Cheng FY, Tao ZL, Chen J (2012) J Power Sources 198:229–235

    Article  CAS  Google Scholar 

  12. Kang B, Ceder G (2009) Nature 458:190–193

    Article  CAS  Google Scholar 

  13. Wang JJ, Sun XL (2012) Energy Environ Sci 5:5163–5185

    Article  CAS  Google Scholar 

  14. Wang J, Yang J, Zhang Y, Li Y, Tang Y, Banis MN, Li X, Liang G, Li R, Sun X (2013) Adv Funct Mater 23:806–814

    Article  CAS  Google Scholar 

  15. He X, Li J, Cai Y, Ying JR (2005) J Power Sources 150:216–222

    Article  CAS  Google Scholar 

  16. Benoit C, Bourbon C, Berthet P, Franger S (2006) J Phys Chem Solids 67:1265–1269

    Article  CAS  Google Scholar 

  17. Ying JR, Wan CR, Jiang CY (2001) J Power Sources 99:78–84

    Article  CAS  Google Scholar 

  18. Cho TH, Chung HT (2004) J Power Sources 133:272–276

    Article  CAS  Google Scholar 

  19. Liao XZ, Ma ZF, Wang L, Zhang XM, Jiang Y, He YS (2004) Electrochem Solid-State Lett 7:A522–A525

    Article  CAS  Google Scholar 

  20. Ait-Salah A, Zaghib K, Mauger A, Gendron F, Julien CM (2006) Phys Status Solidi 203:R1–R3

    Article  CAS  Google Scholar 

  21. Gaberscek M, Dominko R, Jamnik J (2007) Electrochem Commun 9:2778–2783

    Article  CAS  Google Scholar 

  22. Zhu YM, Tang SZ, Shi HH, Hu HL (2014) Ceram Int 40:2685–2690

    Article  CAS  Google Scholar 

  23. Liu H, Xie JY, Wang K (2008) J Alloy Compd 459:521–525

    Article  CAS  Google Scholar 

  24. Sun CS, Zhou Z, Xu ZG, Wang DG, Wei JP, Bian XK, Yan J (2009) J Power Sources 193:841–845

    Article  CAS  Google Scholar 

  25. Lin ZJ, Hu XB, Huai YJ, Liu L, Deng ZH, Suo JS (2010) Solid State Ionics 181:412–415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (21063003, 51064004 and 51364004), Guangxi Natural Science Foundation (2011GXNSFA018016), Guangxi Experiment Center of Science and Technology (LGZXKF201105), and Program for Excellent Talents in Guangxi Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HQ., Zhang, XH., Zheng, FH. et al. Surfactant effect on synthesis of core-shell LiFePO4/C cathode materials for lithium-ion batteries. J Solid State Electrochem 19, 187–194 (2015). https://doi.org/10.1007/s10008-014-2598-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2598-5

Keywords

Navigation