Skip to main content
Log in

Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hybrid material consisting of α-Fe2O3 and nitrogen-doped reduced graphene oxide (N-rGO/Fe2O3) for supercapacitor electrode material has been synthesized via an easy one-step hydrothermal method, where urea serves as nitrogen source, reducing agent and precipitant. As a result, the reduction and nitrogen doping of graphene oxide and the in situ formation of α-Fe2O3 are achieved simultaneously. The results show that the synthesized N-rGO/Fe2O3 composite exhibits much better electrochemical performance than the sample without nitrogen doping. Moreover, thanks to the positive synergetic effect between N-rGO and α-Fe2O3, the N-rGO/Fe2O3 composite shows superior electrochemical property, including high capacitance, excellent rate capability, and good cycle life. Consequently, the easy preparation approach in this work will be considered as an efficient pathway for the development of metal oxide or hydroxide/N-rGO electrode material for high-performance supercapacitors.

Nitrogen-doped reduced graphene oxide/α-Fe2O3 (N-rGO/Fe2O3) composite was prepared via easy one-step hydrothermal method, where urea served as nitrogen source, reducing agent, and precipitant. The presence of N-rGO was favored for the smaller size and more homogenous distribution of Fe2O3 nanoparticle. Due to the nitrogen doping and positive synergistic effect between N-rGO and Fe2O3, the obtained composite exhibited superior electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7

Similar content being viewed by others

References

  1. Yang SH, Song XF, Zhang P, Gao L (2013) ACS Appl Mater Inter 5:3317–3322

    Article  CAS  Google Scholar 

  2. Yuan CZ, Li JY, Hou LR, Zhang XG, Shen LF, Lou XW (2012) Adv Funct Mater 22:4592–4597

    Article  CAS  Google Scholar 

  3. Dai SG, Xi Y, Hu CG, Liu JL, Zhang KY, Yue XL, Cheng L (2013) J Mater Chem A 1:15530–15534

    Article  CAS  Google Scholar 

  4. Liu JP, Jiang J, Cheng CW, Li HX, Zhang JX, Gong H, Fan HJ (2011) Adv Mater 23:2076–2081

    Article  CAS  Google Scholar 

  5. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publisher, New York

    Book  Google Scholar 

  6. Zhang JL, Liu HD, Shi P, Li YJ, Huang LH, Mai WJ, Tan SZ, Cai X (2014) J Power Sources 267:356–365

    Article  CAS  Google Scholar 

  7. Zhao X, Sanchez BM, Dobson PJ, Grant PS (2011) Nanoscale 3:839–855

    Article  CAS  Google Scholar 

  8. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Nat Commun 2, doi: 10.1038/ncomms1387

  9. Lu XH, Yu MH, Zhai T, Wang GM, Xie SL, Liu TY, Liang CL, Tong YX, Li Y (2013) Nano Lett 13:2628–2633

    Article  CAS  Google Scholar 

  10. Reddy MV, Yu T, Sow CH, Shen ZX, Lim CT, Rao GVS, Chowdari BVR (2007) Adv Funct Mater 17:2792–2799

    Article  CAS  Google Scholar 

  11. Wu NL, Wang SY, Han CY, Wu DS, Shiue LR (2003) J Power Sources 113:173–178

    Article  CAS  Google Scholar 

  12. Nagarajan N, Zhitomirsky I (2006) J Appl Electrochem 36:1399–1405

    Article  CAS  Google Scholar 

  13. Xie KY, Li J, Lai YQ, Lu W, Zhang ZA, Liu YX, Zhou LM, Huang HT (2011) Electrochem Commun 13:657–660

    Article  CAS  Google Scholar 

  14. Zhao X, Johnston C, Grant PS (2009) J Mater Chem 19:8755–8760

    Article  CAS  Google Scholar 

  15. Allen MJ, Tung VC, Kaner RB (2010) Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  16. Lee KK, Deng S, Fan HM, Mhaisalkar S, Tan HR, Tok ES, Loh KP, Chin WS, Sow CH (2012) Nanoscale 4:2958–2961

    Article  CAS  Google Scholar 

  17. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nano Lett 11:2472–2477

    Article  CAS  Google Scholar 

  18. Qiu YC, Zhang XF, Yang SH (2011) Phys Chem Chem Phys 13:12554–12558

    Article  CAS  Google Scholar 

  19. Lin ZY, Liu Y, Yao YG, Hildreth OJ, Li Z, Moon K, Wong CP (2011) J Phys Chem C 115:7120–7125

    Article  CAS  Google Scholar 

  20. Wu ZS, Ren W, Xu L, Li F, Cheng HM (2011) ACS Nano 5:5463–5471

    Article  CAS  Google Scholar 

  21. Lv RT, Cui TX, Jun MS, Zhang Q, Cao AY, Su DS, Zhang ZJ, Yoon SH, Miyawaki J, Mochida I, Kang FY (2011) Adv Funct Mater 21:999–1006

    Article  CAS  Google Scholar 

  22. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  23. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskly AD (1999) Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  24. Sun L, Wang L, Tian CG, Tan TX, Xie Y, Shi KY, Li MT, Fu HG (2012) RSC Adv 2:4498–4506

    Article  CAS  Google Scholar 

  25. Shin WH, Jeong HM, Kim BG, Kang JK, Choi JW (2012) Nano Lett 12:2283–2288

    Article  CAS  Google Scholar 

  26. Deng DH, Pan XL, Yu LA, Cui Y, Jiang YP, Qi J, Li WX, Fu Q, Ma XC, Xue QK, Sun GQ, Bao XH (2011) Chem Mater 23:1188–1193

    Article  CAS  Google Scholar 

  27. Lambert TN, Chavez CA (2009) J Phys Chem C 113:19812–19823

    Article  CAS  Google Scholar 

  28. Jeong HK, Lee YP, Lahaye RJWE, Park MH, An KH, Kim IJ, Yang CW, Park CY, Ruoff RS, Lee YH (2008) J Am Chem Soc 130:1362–1366

    Article  CAS  Google Scholar 

  29. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) ACS Nano 3:2653–2659

    Article  CAS  Google Scholar 

  30. Xu YY, Yang S, Zhang GY, Sun YQ, Gao DZ, Sun YX (2011) Mater Lett 65:1911–1914

    Article  CAS  Google Scholar 

  31. Xue YH, Liu J, Chen H, Wang RG, Li DQ, Qu J, Dai LM (2012) Angew Chem Int Ed 51:12124–12127

    Article  CAS  Google Scholar 

  32. Hassan MF, Guo Z, Chen Z, Liu H (2011) Mater Res Bull 46:858–864

    Article  CAS  Google Scholar 

  33. Jin Z, Yao J, Kittrell C, Tour JM (2011) ACS Nano 5:4112–4117

    Article  CAS  Google Scholar 

  34. Wang Y, Shao YY, Matson DW, Li JH, Lin YH (2010) ACS Nano 4:1790–1798

    Article  CAS  Google Scholar 

  35. Malitesta C, Losito I, Sabbatini L, Zambonin PG (1995) J Electron Spectrosc Relat Phenom 76:629–634

    Article  CAS  Google Scholar 

  36. Casanovas J, Ricart JM, Rubio J, Illas F, Jimenez-Mateos JM (1996) J Am Chem Soc 118:8071–8076

    Article  CAS  Google Scholar 

  37. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Adv Funct Mater 19:438–447

    Article  CAS  Google Scholar 

  38. Lota G, Lota K, Frackowiak E (2007) Electrochem Commun 9:1828–1832

    Article  CAS  Google Scholar 

  39. Zhu XJ, Zhu W, Murali YS, Stollers MD, Ruoff RS (2011) ACS Nano 5:3333–3338

    Article  CAS  Google Scholar 

  40. Wu CZ, Yin P, Zhu X, Ouyang C, Xie Y (2006) J Phys Chem B 110:17806–17812

    Article  CAS  Google Scholar 

  41. Wang DW, Li YQ, Wang QH, Wang TM (2012) J Solid State Electrochem 16:2095–2102

    Article  CAS  Google Scholar 

  42. Low QX, Ho GW (2014) Nano Energy 5:28–35

    Article  CAS  Google Scholar 

  43. Zhu W, Murali S, Stollers MD, Ganesh KJ, Cai WW, Ferreira PJ, Ruoff RS (2011) Science 332:1537–1541

    Article  CAS  Google Scholar 

  44. Chen S, Zhu JW, Wu XD, Han QF, Wang X (2010) ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  45. Wang Z, Ma CY, Wang HL, Liu ZH, Hao ZP (2013) J Alloy Compd 552:486–491

    Article  CAS  Google Scholar 

  46. Yang WL, Gao Z, Wang B, Liu LH (2013) Solid State Sci 20:46–53

    Article  Google Scholar 

  47. Wang DW, Wang QH, Wang TM (2011) Nanotechnology 22:135604

    Article  Google Scholar 

  48. Xu L, Xia JX, Xu H, Yin S, Wang K, Huang LY, Wang LG, Li HM (2014) J Power Sources 245:866–874

    Article  CAS  Google Scholar 

  49. Pandey GP, Hashmi SA, Kumar Y (2010) J Electrochem Soc 157:A105–A114

    Article  CAS  Google Scholar 

  50. Fang DL, Chen ZD, Liu X, Wu ZF, Zheng CH (2012) Electrochim Acta 81:321–329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Nature Science Foundation of China (Nos. 20801023, 21271087, and 51172099), the Fundamental Research Funds for the Central Universities (Nos. 51208024 and 11612109), and the Research and innovation project of Jinan University for Excellent Master (201415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H.D., Zhang, J.L., Xu, D.D. et al. Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material. J Solid State Electrochem 19, 135–144 (2015). https://doi.org/10.1007/s10008-014-2580-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2580-2

Keywords

Navigation