Skip to main content
Log in

Study of carbon surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for high-capacity lithium ion battery cathode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon surface-modified Li-excess layered oxide solid solution Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode is fabricated through a liquid phase route using polyvinylpyrrolidone as carbon source. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the crystal structure and the chemical states of elements for Li[Li0.2Mn0.54Ni0.13Co0.13]O2 are kept after carbon surface treatment. The high-resolution transmission electron microscopy demonstrated the existence of very little carbon on the surface and the clear boundary after carbon treatment. The carbon surface-modified sample delivers a discharge capacity of 293.2 mAh g−1 at C/10 rate (suppose 1 C rate = 250 mA g−1) and 191.6 mAh g−1 at 1 C rate between 2.0 and 4.8 V; the capacity retention rate is ∼86 % after 70 cycles at 1 C rate. Superior electrochemical properties can be contributed to the carbon surface modification in these aspects including minimizing nanoparticle aggregation and cell polarization, increasing the electronic conductivity, suppressing the elimination of oxide ion vacancies, as well as suppressing the formation of the thick solid electrolyte interfacial layer. Moreover, the annealing process of carbon surface modification might be able to consume Li2CO3 impurity partly and cause the recrystallization of the surface disordered layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qu QT, Fu LJ, Zhan XY, Samuelis D, Maier J, Li L, Tian S, Li ZH, Wu YP (2011) Energ Environ Sci 4:3985–3990

    Article  CAS  Google Scholar 

  2. Sun CW, Rajasekhara S, Goodenough JB, Zhou F (2011) J Am Chem Soc 133:2132–2135

    Article  CAS  Google Scholar 

  3. Guo XJ, Li YX, Zheng M, Zheng JM, Li J, Gong ZL, Yang Y (2008) J Power Sources 184:414–419

    Article  CAS  Google Scholar 

  4. Wu Y, Manthiram A (2006) Electrochem Solid-State Lett 9:A221–A224

    Article  CAS  Google Scholar 

  5. Liu J, Manthiram A (2009) Chem Mater 21:1695–1707

    Article  CAS  Google Scholar 

  6. Wu Y, Murugan AV, Manthiram A (2008) J Electrochem Soc 155:A635–A641

    Article  CAS  Google Scholar 

  7. Zhao YJ, Zhao CS, Feng HL, Sun ZQ, Xia DG (2011) Electrochem Solid-State Lett 14:A1–A5

    Article  CAS  Google Scholar 

  8. Zheng JM, Li J, Zhang ZR, Guo XJ, Yang Y (2008) Solid State Ionics 179:1794–1799

    Article  CAS  Google Scholar 

  9. Zheng JM, Zhang ZR, Wu XB, Dong ZX, Zhu Z, Yang Y (2008) J Electrochem Soc 155:A775–A782

    Article  CAS  Google Scholar 

  10. Lee SH, Koo BK, Kim JC, Kim KM (2008) J Power Sources 184:276–283

    Article  CAS  Google Scholar 

  11. Kang SH, Thackeray MM (2009) Electrochem Commun 11:748–751

    Article  CAS  Google Scholar 

  12. Saravanan K, Balaya P, Reddy MV, Chowdari BVR, Vittal JJ (2010) Energ Environ Sci 3:457–464

    Article  CAS  Google Scholar 

  13. Lin B, Wen ZY, Wang XY, Liu Y (2010) J Solid State Electrochem 14:1807–1811

    Article  CAS  Google Scholar 

  14. Guo R, Shi PF, Cheng XQ, Du CY (2009) J Alloys Compd 473:53–59

    Article  CAS  Google Scholar 

  15. Oh SW, Myung ST, Oh SM, Yoon CS, Amine K, Sun YK (2010) Electrochim Acta 55:1193–1199

    Article  CAS  Google Scholar 

  16. Yoon WS, Iannopollo S, Grey CP, Carlier D, Gorman J, Reed J, Ceder G (2004) Electrochem Solid-State Lett 7:A167–A171

    Article  CAS  Google Scholar 

  17. Kim JS, Johnson CS, Vaughey JT, Thackeray MM, Hackney SA (2004) Chem Mater 16:1996–2006

    Article  CAS  Google Scholar 

  18. Hashem AMA, Abdel-Ghany AE, Eid AE, Trottier J, Zaghib K, Mauger A, Julien CM (2011) J Power Sources 196:8632–8637

    Article  CAS  Google Scholar 

  19. Shaju KM (2002) Subba Rao GV, Chowdari BVR. Electrochim Acta 48:145–151

    Article  CAS  Google Scholar 

  20. Sinha NN, Munichandraiah N (2009) Acs Appl Mater Inter 1:1241–1249

    Article  CAS  Google Scholar 

  21. Martha SK, Nanda J, Veith GM, Dudney NJ (2012) J Power Sources 216:179–186

    Article  CAS  Google Scholar 

  22. Haik O, Leifer N, Samuk-Fromovich Z, Zinigrad E, Markovsky B, Larush L, Goffer Y, Goobes G, Aurbach D (2010) J Electrochem Soc 157:A1099–A1107

    Article  CAS  Google Scholar 

  23. Li WT, Lucht BL (2006) J Electrochem Soc 153:A1617–A1625

    Article  CAS  Google Scholar 

  24. Edstrom K, Gustafsson T, Thomas JO (2004) Electrochim Acta 50:397–403

    Article  Google Scholar 

  25. Wang QY, Liu J, Murugan AV, Manthiram A (2009) J Mater Chem 19:4965–4972

    Article  CAS  Google Scholar 

  26. Wu Y, Murugan AV, Manthiram A (2008) J Electrochem Soc 155:A635–A641

    Article  CAS  Google Scholar 

  27. Liu J, Manthiram A (2010) J Mate Chem 20:3961–3967

    Article  CAS  Google Scholar 

  28. Yu DYW, Yanagida K, Nakamura H (2010) J Electrochem Soc 157:A1177–A1182

    Article  CAS  Google Scholar 

  29. Liu J, Yang YF, Yu P, Li Y, Shao HX (2006) J Power Sources 161:1435–1442

    Article  CAS  Google Scholar 

  30. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) J Am Chem Soc 128:8694–8698

    Article  CAS  Google Scholar 

  31. Lu ZH, Dahn JR (2002) J Electrochem Soc 149:A815–A822

    Article  CAS  Google Scholar 

  32. Liu J, Manthiram A (2009) Chem Mater 21:1695–1707

    Article  CAS  Google Scholar 

  33. Armand M, Tarascon JM (2008) Nature 451:652–657

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to express their sincere thanks to the Nature Science Foundation of China (no. 51072234) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suqin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Liu, S. & Liang, X. Study of carbon surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for high-capacity lithium ion battery cathode. J Solid State Electrochem 17, 1067–1075 (2013). https://doi.org/10.1007/s10008-012-1970-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1970-6

Keywords

Navigation