Skip to main content
Log in

Surface modifications of Li-ion battery electrodes with various ultrathin amphoteric oxide coatings for enhanced cycleability

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ultrathin ZnO, ZrO2, and Al2O3 surface coatings are deposited via atomic layer deposition (ALD) with high conformality and atomic scale thickness control to enhance the electrochemical performance of LiMn2O4 for applications in lithium ion batteries. Two types of ALD-modified LiMn2O4 electrodes are fabricated: one is ALD-coated LiMn2O4 composite electrode and the other is electrode composed of ALD-coated LiMn2O4 particles and uncoated carbon/polyvinylidenefluoride network. Cycling performance and cyclic voltammetric patterns reveal that ZnO ALD coating is the most effective protective film for improving the electrochemical performance of LiMn2O4 at either 25 or 55 °C, followed by ZrO2 and Al2O3. After 100 electrochemical cycles in 1 C at 55 °C, the electrode consisting of LiMn2O4 particles coated with six ZnO ALD layers (as thin as ~1 nm) delivers the highest final capacity, more than twice that of the bare electrode. It is also found that amphoteric oxide coating on LiMn2O4 particles can enhance the cycleability of LiMn2O4 more effectively than coating on the composite electrode. Furthermore, for ALD coating either on the composite electrode or on LiMn2O4 particles, the effect of oxide ALD modification for improving capacity retention and increasing specific capacity of LiMn2O4 is more phenomenal at elevated temperature than at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Park OK, Cho Y, Lee S, Yoo HC, Song HK, Cho J (2011) Energy Environ Sci 4:1621–1633

    Article  CAS  Google Scholar 

  3. Manthiram A (2011) J Phys Chem Lett 2:176–184

    Article  CAS  Google Scholar 

  4. Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim DK (2010) Nano Lett 10:3852–3856

    Article  CAS  Google Scholar 

  5. Chung KY, Lee HS, Yoon WS, McBreen J, Yang XQ (2006) J Electrochem Soc 153:A774–A780

    Article  CAS  Google Scholar 

  6. Doi T, Inaba M, Tsuchiya H, Jeong SK, Iriyamac Y, Abe T, Ogumi Z (2008) J Power Sources 180:539–545

    Article  CAS  Google Scholar 

  7. Myung ST, Amine K, Sun YK (2010) J Mater Chem 20:7074–7095

    Article  CAS  Google Scholar 

  8. Wang H, Tan TA, Yang P, Lai MO, Lu L (2011) J Phys Chem C 115:6102–6110

    Article  CAS  Google Scholar 

  9. Simmen F, Hintennach A, Horisberger M, Lippert T, Novák P, Schneider CW, Wokaun A (2010) J Electrochem Soc 157:A1026–A1029

    Article  CAS  Google Scholar 

  10. Hirayama M, Ido H, Kim K, Cho W, Tamura K, Mizuki J, Kanno R (2010) J Am Chem Soc 132:15268–15276

    Article  CAS  Google Scholar 

  11. Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Electrochim Acta 51:3872–3883

    Article  CAS  Google Scholar 

  12. Park SB, Shin HC, Lee WG, Cho WI, Jang H (2008) J Power Sources 180:597–601

    Article  CAS  Google Scholar 

  13. Shin DW, Choi JW, Ahn JP, Choi WK, Cho YS, Yoon SJ (2010) J Electrochem Soc 157:A567–A570

    Article  CAS  Google Scholar 

  14. Lim S, Cho J (2008) Electrochem Commun 10:1478–1481

    Article  CAS  Google Scholar 

  15. Wu HM, Belharouak I, Abouimrane A, Sun YK, Amine K (2010) J Power Sources 195:2909–2913

    Article  CAS  Google Scholar 

  16. Kim JS, Johnson CS, Vaughey JT, Hackney SA, Walz KA, Zeltner WA, Anderson MA, Thackeray MM (2004) J Electrochem Soc 151:A1755–A1761

    Article  CAS  Google Scholar 

  17. Walz KA, Johnson CS, Genthe J, Stoiber LC, Zeltner WA, Anderson MA, Thackeray MM (2010) J Power Sources 195:4943–4951

    Article  CAS  Google Scholar 

  18. Sclar H, Haik O, Menachem T, Grinblat J, Leifer N, Meitav A, Luski S, Aurbach D (2012) J Electrochem Soc 159:A228–A237

    Article  CAS  Google Scholar 

  19. Qing C, Bai Y, Yang J, Zhang W (2011) Electrochim Acta 56:6612–6618

    Article  CAS  Google Scholar 

  20. Guan D, Jeevarajan JA, Wang Y (2011) Nanoscale 3:1465–1469

    Article  CAS  Google Scholar 

  21. Zhao J, Wang Y (2012) J Phys Chem C 116:11867–11876

    Article  CAS  Google Scholar 

  22. Guan D, Wang Y (2012) Ultrathin surface coatings to enhance cycling stability of LiMn2O4 cathode in lithium-ion batteries. Ionics. doi:10.1007/s11581-012-0717-9

  23. Leung K, Qi Y, Zavadil KR, Jung YS, Dillon AC, Cavanagh AS, Lee SH, George SM (2011) J Am Chem Soc 133:14741–14754

    Article  CAS  Google Scholar 

  24. Jung YS, Cavanagh AS, Riley LA, Kang SH, Dillon AC, Groner MD, George SM, Lee SH (2010) Adv Mater 22:2172–2176

    Article  CAS  Google Scholar 

  25. Riley LA, Atta SV, Cavanagh AS, Yan Y, George SM, Liu P, Dillon AC, Lee SH (2011) J Power Sources 196:3317–3324

    Article  CAS  Google Scholar 

  26. Jung YS, Cavanagh AS, Dillon AC, Groner MD, George SM, Lee SH (2010) J Electrochem Soc 157:A75–A81

    Article  CAS  Google Scholar 

  27. Scott ID, Jung YS, Cavanagh AS, Yan Y, Dillon AC, George SM, Lee SH (2011) Nano Lett 11:414–418

    Article  CAS  Google Scholar 

  28. Jin SH, Jun GH, Hong SH, Jeon S (2012) Carbon 50:4483–4488

    Article  CAS  Google Scholar 

  29. Meng X, Geng D, Liu J, Li R, Sun X (2011) Nanotechnology 22:165602

    Article  Google Scholar 

  30. Lee JT, Wang FM, Cheng CS, Li CC, Lin CH (2010) Electrochim Acta 55:4002–4006

    Article  CAS  Google Scholar 

  31. Zhao J, Wang Y (2012) Chem Commun 48:8108–8110

    Article  CAS  Google Scholar 

  32. Thackeray MM, Johnson CS, Kim JS, Lauzze KC, Vaughey JT, Dietz N, Abraham D, Hackney SA, Zeltner W, Anderson MA (2003) Electrochem Commun 5:752–758

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ralph E. Powe Junior Faculty Enhancement Award sponsored by Oak Ridge Associated Universities (ORAU), DART2 Fund sponsored by NASA-LABOR, and PFund sponsored by NSF-LABOR. The authors also acknowledge the Materials Characterization Center (MCC) at LSU for the use of XRD, SEM, TEM, and XPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 616 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Wang, Y. Surface modifications of Li-ion battery electrodes with various ultrathin amphoteric oxide coatings for enhanced cycleability. J Solid State Electrochem 17, 1049–1058 (2013). https://doi.org/10.1007/s10008-012-1962-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1962-6

Keywords

Navigation