Skip to main content
Log in

Electrodeposition of aluminum–hafnium alloy from the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemistry of Hf(IV) and the electrodeposition of Al–Hf alloys were examined in the Lewis acidic 66.7–33.3 mol% aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt containing HfCl4. When cyclic staircase voltammetry was carried out at a platinum disk electrode in this melt, the deposition and stripping waves for Al shifted to negative and positive potentials, respectively, suggesting that aluminum stripping is more difficult due to the formation of Al–Hf alloys. Al–Hf alloy electrodeposits containing ~13 at.% Hf were obtained on Cu rotating wire and cylinder electrodes. The Hf content in the Al–Hf alloy deposits depended on the HfCl4 concentration in the melt, the electrodeposition temperature, and the applied current density. The deposits were composed of dense crystals and were completely chloride-free. The chloride-induced pitting corrosion potential of the resulting Al–Hf alloys was approximately +0.30 V against pure aluminum when the Hf content was above 10 at.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Frankel GS, Newman RC, Jahnes CV, Russak MA (1993) J Electrochem Soc 140:2192–2197

    Article  CAS  Google Scholar 

  2. Davis JR (ed) (1999) Corrosion of aluminum and aluminum alloys. ASM International, Materials Park

    Google Scholar 

  3. Fass M, Itzhak D, Eliezer D, Froes FH (1987) J Mater Sci Lett 6:1227–1228

    Article  CAS  Google Scholar 

  4. Edelstein AS, Everett RK, Perepezko JH, Bassani MHS (1997) J Mater Res 12:385–391

    Article  CAS  Google Scholar 

  5. Chen HC, Pfender E (1996) Thin Solid Films 280:188–198

    Article  CAS  Google Scholar 

  6. Banerjee R, Ahuja R, Fraser HL (1996) Phys Rev Lett 76:3778–3781

    Article  CAS  Google Scholar 

  7. Stafford GR, Hussey CL (2002) In: Alkire RC, Kolb DM (eds) Advances in electrochemical science and engineering, vol 7. Wiley, Weinheim, pp 275–347

    Google Scholar 

  8. Tsuda T, Hussey CL, Stafford GR (2010) ECS Trans 3(35):217–231

    Google Scholar 

  9. Takenaka T, Kawakami M (2001) Int J Mater Product Tech 2:500–505

    Google Scholar 

  10. Tsuda T, Hussey CL, Stafford GR, Bonevich JE (2003) J Electrochem Soc 150:C234–C243

    Article  CAS  Google Scholar 

  11. Tsuda T, Hussey CL (2003) J Min and Metall B 39:3–22

    Article  CAS  Google Scholar 

  12. Matsunaga M, Kitazaki T, Hosokawa K, Hirano S, Yoshida M (1994) In: Hussey CL, Newman DS, Mamantov G, Ito Y (eds) Ninth international symposium on molten salts, PV94-13. The Electrochemical Society, Pennington, pp 422–425

    Google Scholar 

  13. De Long HC, Trulove PC (1996) In: Carlin RT, Deki S, Matsunaga M, Newman DS, Selman JR, Stafford GR (eds) Tenth international symposium on molten salts, PV96-7. The Electrochemical Society, Pennington, pp 276–283

    Google Scholar 

  14. De Long HC, Mitchell JA, Trulove PC (1998) High Temp Mater Processes 2:507–519

    Google Scholar 

  15. Trulove PC, Mitchell JA, Hagans PL, Carlin RT, Stafford GR, De Long HC (2000) In: Trulove PC, De Long HC, Stafford GR, Deki S (eds) Twelfth international symposium on molten salts, PV99-41. The Electrochemical Society, Pennington, pp 517–526

    Google Scholar 

  16. Tsuda T, Hussey CL, Stafford GR (2004) J Electrochem Soc 151:C379–C384

    Article  CAS  Google Scholar 

  17. Tsuda T, Hussey CL, Stafford GR, Kongstein O (2004) J Electrochem Soc 151:C447–C454

    Article  CAS  Google Scholar 

  18. Tsuda T, Ikeda Y, Arimura T, Imanishi A, Kuwabata S, Hussey CL, Stafford GR (2012) ECS Trans 50:239–245

    Google Scholar 

  19. Tsuda T, Arimoto S, Kuwabata S, Hussey CL (2008) J Electrochem Soc 155:D256–D262

    Article  CAS  Google Scholar 

  20. Tsuda T, Hussey CL, Stafford GR (2005) J Electrochem Soc 152:C620–C625

    Article  CAS  Google Scholar 

  21. Tsuda T, Hussey CL (2008) Thin Solid Films 516:6220–6225

    Article  CAS  Google Scholar 

  22. Katabua M, Rolland P, Mamantov G, Hulett L (1982) Inorg Chem 21:3569–3570

    Article  CAS  Google Scholar 

  23. Wilkes JS, Levisky JA, Wilson RA, Hussey CL (1982) Inorg Chem 21:1263–1264

    Article  CAS  Google Scholar 

  24. Tsuda T, Hussey CL (2009) In: White RE (ed) Modern aspects of electrochemistry, vol 45. Springer Science, NY, pp 63–174

    Google Scholar 

  25. Bilewicz R, Wikiel K, Osteryoung R, Osteryoung J (1989) Anal Chem 61:965–972

    Article  CAS  Google Scholar 

  26. Nicholson RS (1966) Anal Chem 38:1406

    Article  CAS  Google Scholar 

  27. Nicholson RS, Shain I (1964) Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  28. Gilbert B, Mamantov G, Fung KW (1975) Inorg Chem 14:1802–1806

    Article  CAS  Google Scholar 

  29. Carlin RT, Osteryoung RA, Wilkes JS, Rovang J (1990) Inorg Chem 29:3003–3009

    Article  CAS  Google Scholar 

  30. Stafford GR, Moffat TP (1995) J Electrochem Soc 142:3288–3296

    Google Scholar 

  31. Fannin AA Jr, Floreani DA, King LA, Landers JS, Piersma BJ, Stech DJ, Vaughn RL, Wilkes JS, John LW (1984) J Phys Chem 88:2614–2621

    Article  CAS  Google Scholar 

  32. Bockris JOM, Reddy AKN (1998) Modern electrochemistry. Plenum, NY

    Google Scholar 

  33. Goldstein JI, Lyman CE, Newbury DE, Lifshin E, Echlin P, Sawyer L, Joy DC, Michael JR (eds) (2003) Scanning electron microscopy and X-ray microanalysis, 3rd edn. Springer Science, NY

    Google Scholar 

  34. Okamoto H (2010) Desk handbook phase diagrams for binary alloys, 2nd edn. ASM International, Materials Park

    Google Scholar 

  35. Card JCPDS (1996) Powder diffraction file. International Center for Diffraction Data, Newtown Square

    Google Scholar 

Download references

Acknowledgments

Research at the University of Mississippi was funded by the US Department of Energy. In addition, part of this research was supported by Grant-in-Aid for Scientific Research B, Grant No. 24350071, and Grant-in-Aid for Scientific Research on Innovative Areas (Area No. 2206), Grant No. 23107518, from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), and Iketani Science and Technology Foundation (Japan). We thank Mr. Tsukasa Kanetsuku (Osaka University) and Mr. Tomoki Tsumadori (Osaka University) for their help on the characterization of Al–Hf alloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Hussey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuda, T., Kuwabata, S., Stafford, G.R. et al. Electrodeposition of aluminum–hafnium alloy from the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt. J Solid State Electrochem 17, 409–417 (2013). https://doi.org/10.1007/s10008-012-1933-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1933-y

Keywords

Navigation