Skip to main content
Log in

Grain boundary corrosion of the surface of annealed thin layers of gold by OH· radicals

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Annealed thin layers of gold with large mono-crystalline areas were treated with OH· radicals generated in an electrochemical Fenton reaction. The morphological changes observed with ex situ atomic force microscopy in non-contact mode and grazing incidence X-ray diffractometry show that the grain boundaries, and generally the non-{111} planes, are the loci of highest reactivity, i.e., the places where the gold dissolution is much faster than on the {111} planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nowicka AN, Hasse U, Hermes M, Scholz F (2010) Angew Chem Int Ed 49:1061

    Article  CAS  Google Scholar 

  2. Nowicka AN, Hasse U, Donten M, Hermes M, Stojek ZJ, Scholz F (2011) J Solid State Electrochem 15:2141

    Article  CAS  Google Scholar 

  3. Sievers G, Hasse U, Scholz F (2012) J Solid State Electrochem 16:1663

    Article  CAS  Google Scholar 

  4. Rapecki T, Nowicka AN, Donten M, Scholz F, Stojek Z (2010) Electrochem Commun 12:1531

    Article  CAS  Google Scholar 

  5. Nowicka AN, Hasse U, Sievers G, Donten M, Stojek Z, Fletcher S, Scholz F (2010) Angew Chem Int Ed 49:3006

    Article  CAS  Google Scholar 

  6. Dutta G, Yang H (2011) Electrochem Commun 13:1328

    Article  CAS  Google Scholar 

  7. Dakkouri AS, Randler R, Kolb DM (1997) Structure and dynamics of metal single crystal surfaces. In: Korzeniewski C, Conway BE (eds) Proc symp: the electrochemical double layer, vol 97–17. The Electrochem Soc, Pennington, pp 13–32

    Google Scholar 

  8. Hammiche A, Webb RP, Wilson IH (1994) Vacuum 45:569

    Article  CAS  Google Scholar 

  9. Wulff H, Steffen H (2008) Characterization of thin films. In: Hippler R, Kersten H, Schmidt H, Schoenbach KH (eds) Low temperature plasmas. Wiley, Berlin, p 329

    Google Scholar 

  10. Oturan MA, Guivarch E, Oturan N, Sires I (2008) Appl Catal, B 82:244

    Article  CAS  Google Scholar 

  11. Munitz A, Komem Y (1980) Thin Solid Films 71:177

    Article  CAS  Google Scholar 

  12. Tadmor R (2008) Surf Sc 602:L108–L111

    Article  CAS  Google Scholar 

  13. Amirfazli A, Neumann AW (2004) Adv Coll Interf Sc 110:121–141

    Article  CAS  Google Scholar 

  14. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  15. Kim H, Xuan Y, Ye PD, Narayanan R, King AH (2009) Acta Materialia 57:3662–3670

    Article  CAS  Google Scholar 

  16. Yang DF, Wilde CP, Morin M (1996) Langmuir 12:6570

    Article  CAS  Google Scholar 

  17. Watanabe MO, Tanaka K, Sakai A (1990) J Vac Sci Technol, B 9:924

    Article  Google Scholar 

  18. Porath D, Goldstein Y, Grayevsky A, Millo O (1994) Surf Sci 321:81

    Article  CAS  Google Scholar 

  19. Toedt F (1961) Korrosion und Korrosionsschutz. Walter de Gruyter, Berlin, p711

    Google Scholar 

  20. Kaesche H (1990) Die Korrosion der Metalle. Springer, Berlin, p 353

    Book  Google Scholar 

  21. Waibel HF, Kleinert M, Kibler LA, Kolb DM (2002) Electrochim Acta 47:1461

    Article  CAS  Google Scholar 

  22. Jakobi K (1994) Surface core-level shift data 3.1.2.5, electronic and vibrational properties. In: Chiarotti G (ed) Landolt–Börnstein—group III condensed matter numerical data and functional relationships in science and technology, vol 24b. Springer, Berlin

    Google Scholar 

  23. Michaelson HB (1977) J Appl Phys 48:4729

    Article  CAS  Google Scholar 

  24. Skriver HL, Rosengaard NM (1992) Phys Rev B 46:7157

    Article  CAS  Google Scholar 

  25. Dakkouri AS, Kolb DM (1999) Reconstruction of gold surfaces. In: Wieckowski A (ed) Interfacial electrochemistry: theorie, experiment and applications. Marcel Dekker, New York, p 151

    Google Scholar 

  26. Kolb DM, Dakkouri AS, Batina N (1995) The surface structure of gold single-crystal electrodes. In: Gewirth AA, Siegenthaler H (eds) Nanoscale probes of the solid/liquid interface. NATO ASI, vol E. Kluwer, Dordrecht, p 263

    Google Scholar 

Download references

Acknowledgments

The authors are very thankful to Professor Stephen Fletcher, Loughborough University, UK, for a detailed discussion of the results and especially for raising the question of line tension. F.S. and U.H. acknowledge the funding of the AFM instrumentation by the European Regional Development Fund (EFRE). G.S. acknowledges support by a fellowship of the Alfried Krupp Wissenschaftskolleg Greifswald. D.D. acknowledges support by CAPES Brazil and DAAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Hasse.

Additional information

Dedicated to Dr. Nina Fjodorovna Zakharchuk on the occasion of her 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasse, U., Fricke, K., Dias, D. et al. Grain boundary corrosion of the surface of annealed thin layers of gold by OH· radicals. J Solid State Electrochem 16, 2383–2389 (2012). https://doi.org/10.1007/s10008-012-1756-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1756-x

Keywords

Navigation