Skip to main content
Log in

Diamond/porous titanium three-dimensional hybrid electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hybrid three-dimensional electrodes produced from microcrystalline boron-doped diamond (BDD) and/or nanocrystalline diamond films were grown on porous titanium (Ti) substrate by hot filament chemical vapor deposition (HFCVD) technique. Powder metallurgy technique was used to obtain the Ti substrates provided by interconnected and open pores among its volume. Diamond growth parameters were optimized in order to provide the entire substrate surface covering including the deeper surfaces, pore bottoms, and walls. The morphology and structure of these electrodes were studied by scanning electron microscopy (SEM) and visible Raman spectroscopy techniques, respectively. Electrochemical response was characterized by cyclic voltammetry measurements. Results showed a wide working potential window and low background current characteristic of the diamond electrodes. The kinetic parameters also pointed out to a quasi-reversible behavior for these hybrid three-dimensional diamond/Ti electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Braga NA, Cairo CAA, Almeida EC, Baldan MR, Ferreira NG (2008) Diam Relat Mater 17:1891. doi:10.1016/j.diamond.2008.04.002

    Article  CAS  Google Scholar 

  2. Braga NA, Cairo CAA, Almeida EC, Baldan MR, Ferreira NG (2009) in press

  3. Cappuccio G, Sessa V, Terranova ML (1996) Appl Phys Lett 69:4176. doi:10.1063/1.116977

    Article  CAS  Google Scholar 

  4. Swain GM (1994) J Electrochem Soc 141:3382. doi:10.1149/1.2059343

    Article  CAS  Google Scholar 

  5. Vinokur N, Miller B, Avyigal Y, Kalish R (1996) J Electrochem Soc 143:L238. doi:10.1149/1.1837157

    Article  CAS  Google Scholar 

  6. Pleskov YV, Sakharova AY, Krotova MD, Bouilov LL, Spitsyn BV (1987) J Electroanal Chem 228:19. doi:10.1016/0022-0728(87)80093-1

    Article  CAS  Google Scholar 

  7. Szunerits S, Boukherroub R (2008) J Solid State Electrochem 12:1205. doi:10.1007/s10008-007-0473-3

    Article  CAS  Google Scholar 

  8. Kondo T, Niwano Y, Tamura A, Ivandini TA, Einaga Y, Tryk DA, Fujishima A, Kawai T (2008) Electroanalysis 20:1556. doi:10.1002/elan.200804212

    Article  CAS  Google Scholar 

  9. Denisova AE, Pleskov YV (2008) Russ J Electrochem 44:1083. doi:10.1134/S1023193508090152

    Article  CAS  Google Scholar 

  10. Chuanuwatanakul S, Chalapakul O, Motomizu S (2008) Anal Sci 24:493. doi:10.2116/analsci.24.493

    Article  CAS  Google Scholar 

  11. Swain GM (1994) Adv Mater 6:388. doi:10.1002/adma.19940060511

    Article  CAS  Google Scholar 

  12. Chen Q, Granger MC, Lister TE, Swain GM (1997) J Electrochem Soc 144:3806. doi:10.1149/1.1838096

    Article  CAS  Google Scholar 

  13. Declements R, Hirsche BL, Granger MC, Xu J, Swain GM (1996) J Electrochem Soc 143:L150. doi:10.1149/1.1836958

    Article  CAS  Google Scholar 

  14. Declements R, Swain GM (1997) J Electrochem Soc 144:856. doi:10.1149/1.1837500

    Article  CAS  Google Scholar 

  15. Zhu JZ, Yang SZ, Xu CF, Fan HZ (1995) Frenesius’ J Anal Chem 352:389. doi:10.1007/BF00322239

    Article  CAS  Google Scholar 

  16. Duo I, Michaud PA, Haenni W, Perret A, Comninellis CH (2000) Electrochem Solid-State Lett 3:325. doi:10.1149/1.1391137

    Article  CAS  Google Scholar 

  17. Javier Del Campo F, Goeting CH, Morris D, Foord JS, Neudeck A, Compton RG, Marken F (2000) Electrochem Solid-State Lett 3:224. doi:10.1149/1.1391008

    Article  Google Scholar 

  18. Wang J, Swain GM, Tachibana T, Kobashi K (2000) Electrochem Solid-State Lett 3:286. doi:10.1149/1.1391126

    Article  CAS  Google Scholar 

  19. Popa E, Kubota Y, Tryk DA, Fujishima A (2000) Anal Chem 72:1724. doi:10.1021/ac990862m

    Article  CAS  Google Scholar 

  20. Koppang MD, Witek M, Blau J, Swain GM (1999) Anal Chem 71:1188. doi:10.1021/ac980697v

    Article  CAS  Google Scholar 

  21. Manivannan A, Tryk DA, Fujishima A (1999) Electrochem Solid-State Lett 2:455. doi:10.1149/1.1390869

    Article  CAS  Google Scholar 

  22. Peiling Z, Jianzhong Z, Shenzhong Y, Xikang Z, Guoxiong Z (1995) Fresenius’ J Anal Chem 353:171. doi:10.1007/BF00322953

    Article  Google Scholar 

  23. Honda K, Rao TN, Tryk DA, Fujishima A, Watanabe M, Yasui K, Masuda H (2000) J Electrochem Soc 147:659. doi:10.1149/1.1393249

    Article  CAS  Google Scholar 

  24. Rao TN, Fujishima A (2000) Diam Relat Mater 9:384. doi:10.1016/S0925-9635(99)00234-4

    Article  CAS  Google Scholar 

  25. Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480. doi:10.1063/1.118568

    Article  CAS  Google Scholar 

  26. Tanahashi I, Yashida A, Nishino A (1990) J Electrochem Soc 137:3052. doi:10.1149/1.2086158

    Article  CAS  Google Scholar 

  27. Ryan G, Pandit A, Apatsidis DP (2006) Biomaterials 27:2651. doi:10.1016/j.biomaterials.2005.12.002

    Article  CAS  Google Scholar 

  28. Setoyama D, Matsunaga J, Muta H, Uno M, Yamanaka S (2004) J Alloys Compd 358:156. doi:10.1016/j.jallcom.2004.04.132

    Article  Google Scholar 

  29. Senkov ON, Chakoumakos BC, Jonas JJ, Froes FH (2001) Mater Res Bull 36:1431. doi:10.1016/S0025-5408(01)00604-3

    Article  CAS  Google Scholar 

  30. Pleskov YV, Evstefeeva YE, Krotova MD, Py L, Shih HC, Varnin VP, Teremetskaya IG, Vlasov II, Ralchenko VG (2005) J Appl Electrochem 35:857. doi:10.1007/s10800-005-2572-0

    Article  CAS  Google Scholar 

  31. Gerger I, Haubner R, Kronberger H, Fafilek G (2004) Diam Relat Mater 13:1062. doi:10.1016/j.diamond.2004.01.025

    Article  CAS  Google Scholar 

  32. Chen X, Chen G (2004) J Electrochem Soc 151:B214. doi:10.1149/1.1651529

    Article  CAS  Google Scholar 

  33. Braga NA, Cairo CAA, Ferreira NG (2007) Quim Nova 30:450

    CAS  Google Scholar 

  34. Ferreira NG, Silva LLG, Corat EJ, Trava Airoldi VJ, Iha K (1999) Braz J Phys 29:760

    CAS  Google Scholar 

  35. Haubner R, Lux B (2002) Int J Refract Met Hard Mater 20:93. doi:10.1016/S0263-4368(02)00006-9

    Article  CAS  Google Scholar 

  36. Bühlmann S, Blank E, Haubner R, Lux B (1999) Diam Relat Mater 8:194. doi:10.1016/S0925-9635(98)00258-1

    Article  Google Scholar 

  37. Askari SJ, Akhtar F, Chen GC, He Q, Wang FY, Meng XM et al (2007) Mater Lett 61:2139. doi:10.1016/j.matlet.2006.08.033

    Article  CAS  Google Scholar 

  38. Fu YQ, Yan BB, Loh NL, Sun CQ, Hing P (1999) J Mater Sci 34:2269. doi:10.1023/A:1004569406535

    Article  CAS  Google Scholar 

  39. May PW, Mankelevich YA (2008) J Phys Chem C 112:12432. doi:10.1021/jp803735a

    Article  CAS  Google Scholar 

  40. Knight DS, White WB (1989) J Mater Res 4:385. doi:10.1557/JMR.1989.0385

    Article  CAS  Google Scholar 

  41. Chu PK, Li L (2006) Mater Chem Phys 96:253. doi:10.1016/j.matchemphys.2005.07.048

    Article  CAS  Google Scholar 

  42. Ferrari AC, Robertson J (2001) Phys Rev B 64:075414. doi:10.1103/PhysRevB.64.075414

    Article  Google Scholar 

  43. Silva LLG, Corat EJ, Barros RCM, Trava-Airoldi VJ, Leite NF (1999) Mater Res 2:1

    Google Scholar 

  44. Zhang RJ, Lee ST, Lam YW (1996) Diam Relat Mater 5:1288. doi:10.1016/0925-9635(96)00539-0

    Article  CAS  Google Scholar 

  45. Colineau E, Gheeraert E, Deneuville A, Manbou J, Brunet F (1997) Diam Relat Mater 6:778. doi:10.1016/S0925-9635(96) 00705-4

    Article  CAS  Google Scholar 

  46. Woehrl N, Buck V (2007) Diam Relat Mater 16:748. doi:10.1016/j.diamond.2006.11.059

    Article  CAS  Google Scholar 

  47. Cicala G, Bruno P, Benedic F, Silva F, Hassouni K, Senesi GS (2005) Diam Relat Mater 14:421. doi:10.1016/j.diamond.2004.12.025

    Article  CAS  Google Scholar 

  48. Martin HB, Argoitia A, Landau U, Anderson AB, Angus JC (1996) J Electrochem Soc 6:L133. doi:10.1149/1.1836901

    Article  Google Scholar 

  49. Granger MC, Xu JS, Strojek JW, Swain JM (1999) Anal Chim Acta 397:145. doi:10.1016/S0003-2670(99)00400-6

    Article  CAS  Google Scholar 

  50. Show Y, Witek MA, Sonthalia P, Swain GM (2003) Chem Mater 15:879. doi:10.1021/cm020927t

    Article  CAS  Google Scholar 

  51. Panizza M, Cerisola G (2005) Electrochim Acta 51:191. doi:10.1016/j.electacta.2005.04.023

    Article  CAS  Google Scholar 

  52. Foti G, Gandini D, Comninellis C, Perret A, Haenni W (1999) Electrochem Solid-State Lett 5:228. doi:10.1149/1.1390792

    Article  Google Scholar 

  53. Granger MC, Swain GMJ (1999) J Electrochem Soc 146:4551. doi:10.1149/1.1392673

    Article  CAS  Google Scholar 

  54. Tryk DA, Tsunozaki K, Rao TN, Fujishima A (2001) Diam Relat Mater 10:1804. doi:10.1016/S0925-9635(01)00453-8

    Article  CAS  Google Scholar 

  55. Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1985) Instrumental methods in electrochemistry. Wiley, New York

    Google Scholar 

  56. Chen P, McCreey RL (1996) Anal Chem 68:3958. doi:10.1021/ac960492r

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are so grateful to FAPESP (process nos. 2008/04968-1 and 2007/00013-4) and CNPq (process no. 141966/2005-0, 471356/2006-9, and 555029/2005-6) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Matsushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braga, N.A., Cairo, C.A.A., Matsushima, J.T. et al. Diamond/porous titanium three-dimensional hybrid electrodes. J Solid State Electrochem 14, 313–321 (2010). https://doi.org/10.1007/s10008-009-0855-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0855-9

Keywords

Navigation