Skip to main content

Advertisement

Log in

Exploring the binding properties of agonists interacting with glucocorticoid receptor: an in silico approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The glucocorticoid receptors (GR) are members of the nuclear receptor superfamily that regulate growth, development, and many of the biological functions, including metabolism and inflammation, in a ligand dependent behavior. Thus, GRs are vital as therapeutic targets with steroid hormones and steroidal analogues, especially including the glucocorticoids. Studying the molecular mechanism of binding between GR and ligands is fundamentally important to develop applications in the pharmacological industry. The present study was carried out via molecular docking and molecular dynamic (MD) simulations of three GR-ligand complexes formed between the ligand binding domain (LBD) of GR with cortisol (a natural steroid), dexamethasone (a well-known synthetic steroid drug), and chonemorphine (a steroid virtually screened from the “Sri Lankan Flora” web-based information system). The investigation was mainly carried out in terms of macroscopic properties of the ligand-protein interactions and conformational fluctuations of the protein. The results indicated greater stability and a similar behavior of the GR protein in the chonemorphine-GR complex, compared to the other two complexes, GR-dexamethasone and GR-cortisol, in an aqueous medium. The integrity of the protein-substrate complexes was preserved by strong hydrogen bonds formed between the amino acid residues of the binding site of the proteins and ligands. The findings revealed that chonemorphine is a promising agonist to GR and may produce a pharmacological effect like that produced by glucocorticoids. Thus, the obtained knowledge could lead to further investigations of the pharmaceutical potential of chonemorphine and biological functions of GR in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Veleiro AS, Alvarez LD, Eduardo SL, Burton G (2010) Structure of the glucocorticoid receptor, a flexible protein that can adapt to different ligands. ChemMedChem 5:649–659

    Article  CAS  Google Scholar 

  2. Álvarez LD, Martí MA, Veleiro AS, Presman DM, Estrin DA, Pecci A, Burton G (2008) Exploring the molecular basis of action of the passive antiglucocorticoid 21-hydroxy-6,19-epoxyprogesterone. J Med Chem 51:1352–1360

    Article  Google Scholar 

  3. Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, Mckee DD, Consler TG, Parks DJ, Stewart EL, Willson TM, Lambert MH, Moore JT, Pearce KH, Xu HE, Carolina N (2002) Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110:93–105

    Article  CAS  Google Scholar 

  4. Álvarez LD, Martí MA, Veleiro AS, Misico RI, Estrin DA, Pecci A, Burton G (2008) Hemisuccinate of 21-Hydroxy-6,19-Epoxyprogesterone: a tissue-specific modulator of the glucocorticoid receptor. ChemMedChem 3:1869–1877

    Article  Google Scholar 

  5. Prasanth GK, Divya LM, Sadasivan C (2010) Bisphenol-A can bind to human glucocorticoid receptor as an agonist : an in silico study. J Appl Toxicol 30:769–774

    Article  CAS  Google Scholar 

  6. Echeverria PC, Picard D (2010) Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim Biophys Acta 1803(6):641–649

    Article  CAS  Google Scholar 

  7. Widén C, Gustafsson J, Wikström A (2003) Cytosolic glucocorticoid receptor interaction with nuclear factor- κ B proteins in rat liver cells. Biochem J 373:211–220

    Article  Google Scholar 

  8. Barnes PJ, Adcock IM (2009) Glucocorticoid resistance in inflammatory diseases. Lancet 373:1905–1917

    Article  CAS  Google Scholar 

  9. Flammer JR, Rogatsky I (2011) Minireview: glucocorticoids in autoimmunity: unexpected targets and mechanisms. Mol Endocrinol 25:1075–1086

    Article  CAS  Google Scholar 

  10. Liberman AC, Druker J, Perone MJ, Arzt E (2007) Glucocorticoids in the regulation of transcription factors that control cytokine synthesis. Cytokine Growth Factor Rev 18:45–56

    Article  CAS  Google Scholar 

  11. De Bosscher K, Van Craenenbroeck K, Meijer OC, Haegeman G (2008) Selective transrepression versus transactivation mechanisms by glucocorticoid receptor modulators in stress and immune systems. Eur J Pharmacol 583:290–302

    Article  Google Scholar 

  12. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants : an evolutionary perspective. Trends Plant Sci 5:439–445

    Article  CAS  Google Scholar 

  13. Suk K (2007) Research focus on natural products and the body’s immune and inflammatory systems. Nova Science, Hauppauge

  14. Herat T (2007) Endemic plants of Sri Lanka. Ministry of Environment and Natural Resources Sri Lanka

  15. Rakers C, Bermudez M, Murgueitio MS, Riniker R, Wolber G (2015) The impact of molecular dynamics on drug design: applications for the characterization of ligand–macromolecule complexes. Drug Discov Today 20:686–702

    Article  Google Scholar 

  16. Frisch GESMJ, Trucks GW, Schlegel HB, Robb BMMA, Cheeseman JR, Scalmani G, Barone V, Petersson HPHGA, Nakatsuji H, Caricato M, Li X, Izmaylov MHAF, Bloino J, Zheng G, Sonnenberg JL, Ehara TNM, Toyota K, Fukuda R, Hasegawa J, Ishida M, Honda JY, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta EBJE, Ogliaro F, Bearpark M, Heyd JJ, Kudin JNKN, Staroverov VN, Keith T, Kobayashi R, Raghavachari JTK, Rendell A, Burant JC, Iyengar SS, Cossi JBCM, Rega N, Millam JM, Klene M, Knox JE, Bakken RESV, Adamo C, Jaramillo J, Gomperts R, Yazyev JWOO, Austin AJ, Cammi R, Pomelli C, Martin GAVRL, Morokuma K, Zakrzewski VG, Salvador ADDP, Dannenberg JJ, Dapprich S, Farkas JCO, Foresman JB, Ortiz JV, Fox DJ (2009) Gaussian 09 revision C.01. Gaussian Inc., Wallingford

  17. Lipinski CA (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26

    Article  CAS  Google Scholar 

  18. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  Google Scholar 

  19. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2004) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4(1):17

    Article  Google Scholar 

  20. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1551–1676

    Article  Google Scholar 

  21. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36:1132–1156

    Article  CAS  Google Scholar 

  22. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  23. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  24. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van Der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  Google Scholar 

  25. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, Van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856

    Article  CAS  Google Scholar 

  26. Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D60:1355–1363

    Google Scholar 

  27. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, p 331

  28. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  29. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  30. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1998) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  Google Scholar 

  31. Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374–376

    Article  CAS  Google Scholar 

  32. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    Article  CAS  Google Scholar 

  33. Kumari R, Kumar R, Lynn A (2014) G-mmpbsa - a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962

    Article  CAS  Google Scholar 

  34. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295:337–356

    Article  CAS  Google Scholar 

  35. Guruge AG, Udawatte BC, Weerasinghe S (2016) An in silico approach of Coumarin-derived inhibitors for human DNA topoisomerase I. Aust J Chem 69:1005–1015

    Article  CAS  Google Scholar 

  36. Shah VC, D’sa AS, De Souza NJ (1989) Chonemorphine, stigmasterol, and ecdysterone: steroids isolated through bioassay-directed plant screening programs. Steroids 53(3–5):559–565

    Article  CAS  Google Scholar 

  37. Chatterjee DK, Iyer N, Ganguli BN (1987) Antiamoebic activity of chonemorphine, a steroidal alkaloid, in experimental models. Parasitol Res 74:30–33

    Article  CAS  Google Scholar 

  38. Shah V, Sunder R, De Souza NJ (1987) Chonemorphine and rapanone—antiparasitic agents from plant sources. J Nat Prod 50:730–731

    Article  CAS  Google Scholar 

  39. Von Langen J, Fritzemeier K, Diekmann S, Hillisch A (2005) Molecular basis of the interaction specificity between the human glucocorticoid receptor and its endogenous steroid ligand cortisol. Chembiochem 6(6):1110–1118

    Article  Google Scholar 

  40. Kabsch W, Sander C (1983) Dicionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was carried out under the Research Grant AP/3/2/2014/RG/01 of University of Colombo, Sri Lanka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha Weerasinghe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathnayake, S., Weerasinghe, S. Exploring the binding properties of agonists interacting with glucocorticoid receptor: an in silico approach. J Mol Model 24, 342 (2018). https://doi.org/10.1007/s00894-018-3879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3879-1

Keywords

Navigation