Skip to main content
Log in

Theoretical study of the H + HCN → H + HNC process

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

An Erratum to this article was published on 17 May 2017

Abstract

We present a theoretical study on the detailed mechanism and kinetics of the H+HCN →H+HNC process. The potential energy surface was calculated at the complete basis set quantum chemical method, CBS-QB3. The vibrational frequencies and geometries for four isomers (H2CN, cis-HCNH, trans-HCNH, CNH2), and seven saddle points (TSn where n = 1 − 7) are very important and must be considered during the process of formation of the HNC in the reaction were calculated at the B3LYP/6-311G(2d,d,p) level, within CBS-QB3 method. Three different pathways (PW1, PW2, and PW3) were analyzed and the results from the potential energy surface calculations were used to solve the master equation. The results were employed to calculate the thermal rate constant and pathways branching ratio of the title reaction over the temperature range of 300 up to 3000 K. The rate constants for reaction H + HCN → H + HNC were fitted by the modified Arrhenius expressions. Our calculations indicate that the formation of the HNC preferentially occurs via formation of cis–HCNH, the fitted expression is k P W2(T) = 9.98 × 10−22 T 2.41 exp(−7.62 kcal.mol−1/R T) while the predicted overall rate constant k O v e r a l l (T) = 9.45 × 10−21 T 2.15 exp(−8.56 kcal.mol−1/R T) in cm 3 molecule −1 s −1.

(a) Potential energy surface, (b) thermal rate constants as a function of temperature and (c) the branching ratios (%) of PW1, PW2, PW3 pathways involved in rm H + HCN → H + HNC process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haynes BS (1977) Combust Flame 28:113

    Article  CAS  Google Scholar 

  2. West GA, Berry MJ (1974) J Chem Phys 61:4700

    Article  CAS  Google Scholar 

  3. Strobel DF (1983) Int Rev Phys Chem 3:145

    Article  CAS  Google Scholar 

  4. Sumathi R, Nguyen MT (1998) J Phys Chem A 102:8013

    Article  CAS  Google Scholar 

  5. Herbst E (1978) Ap J 222:508

    Article  CAS  Google Scholar 

  6. Hebrard E, Dobrijevic M, Loison JC, Bergeat A, Hickson KM (2012) Astron Astrophys 541:13

    Article  Google Scholar 

  7. Petrie S (2002) J Phys Chem A 106(1):1181

    Google Scholar 

  8. ter Horst MA, Schatz GC, Harding LB (1996) J Chem Phys 105:558

    Article  CAS  Google Scholar 

  9. Goldsmith PF, Langer WD, Ellder J, Irvine W, Kollberg E (1981) Astrophys J 249:521

    Article  Google Scholar 

  10. Wootten A, Evans NJ, Snell RI, Vanden PB (1978) Ap J Lett 225:L143

    Article  CAS  Google Scholar 

  11. Glowacki DR, Liang CH, Morley C, Pilling MJ, Robertson SH (2012) J Phys Chem A 116:9545

    Article  CAS  Google Scholar 

  12. Wood GPF, Radom L, Petersson GA, Barnes EC, Frisch MJ, Montgomery JA Jr (2006) J Chem Phys 125(094106):1–16

    Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Gaussian, Inc., Wallingford

  14. Bartis JT, Widom B (1974) J Chem Phys 60:3474

    Article  CAS  Google Scholar 

  15. Baulch DL, Cobos CJ, Cox RA, Frank P, Hayman G, Just T, Kerr JA, Murrells T, Troe MJPJ, Walker RW, Warnatz J (1994) J Phys Chem Ref Data 23:847

    Article  CAS  Google Scholar 

  16. Wang JH, Liu K, Schatz GC, ter Horst M (1997) J Chem Phys 107:7869

    Article  CAS  Google Scholar 

  17. Zhu W, Zhang JZH, Zhang YC, Zhang YB, Zhan LX, Zhang SL, Zhang DH (1998) J Chem Phys 108:3509

    Article  CAS  Google Scholar 

  18. Jiang B, Guo H (2013) J Chem Phys 139:224310

    Article  Google Scholar 

  19. Wang X, Bowman M (2013) J Chem Theory Comput 9:901

    Article  CAS  Google Scholar 

  20. Bair RA, Dunning TH (1985) J Chem Phys 82:2280

    Article  CAS  Google Scholar 

  21. Talbi D, Ellinger Y (1996) Chem. Phys. Lett 263:385

    Article  CAS  Google Scholar 

  22. Mills P, Jentz D, Trenary M (1997) J Am Chem Soc 119:9002

    Article  CAS  Google Scholar 

  23. Hu X, Yin J, Meyer RJ, Trenary M (2015) J Phys Chem C 119:14506

    Article  CAS  Google Scholar 

  24. Nakagawa T, Morino Y (1969) Bull Chem Soc Jpn 42:2212

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a MCTI-PCI grant, Institutional Process Number 454779/2015-1, Individual Process Number 170134/2016-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra F. Albernaz.

Additional information

The original version of this article was revised: During the steps of corrections, the title went wrong. The correct title is shown above.

This paper belongs to Topical Collection VI Symposium on Electronic Structure and Molecular Dynamics – VI SeedMol

An erratum to this article is available at http://dx.doi.org/10.1007/s00894-017-3369-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa, E., da Silva, W.B., P. Barreto, P.R. et al. Theoretical study of the H + HCN → H + HNC process. J Mol Model 23, 169 (2017). https://doi.org/10.1007/s00894-017-3335-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3335-7

Keywords

Navigation