Skip to main content
Log in

A density functional theory investigation of the interaction of the tetraaqua calcium cation with bidentate carbonyl ligands

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Calcium complexes with bidentate carbonyl ligands are important in biological systems, medicine and industry, where the concentration of Ca2+ is controlled using chelating ligands. The exchange of two water molecules of [Ca(H2O)6]2+ for one bidentate monosubstituted and homo disubstituted dicarbonyl ligand was investigated using the B3LYP/6-311++G(d,p) method. The ligand substituents NH2, OCH3, OH, CH3, H, F, Cl, CN and NO2 are functional groups with distinct electron-donating and -withdrawing effects that bond directly to the sp2 C atom of the carbonyl group. The geometry, charge and energy characteristics of the complexes were analyzed to help understand the effects of substituents, spacer length and chelation. Coordination strength was quantified in terms of the enthalpy and free energy of the exchange reaction. The most negative enthalpies were calculated for the coordination of bidentate ligands containing three to five methylene group spacers between carbonyls. The chelate effect contribution was analyzed based on the thermochemistry. The electronic character of the substituent modulates the strength of binding to the metal cation, as ligands containing electron-donor substituents coordinate stronger than those with electron-acceptor substituents. This is reflected in the geometric (bond length and chelating angle), electronic (atomic charges) and energetic (components of the total interacting energy) characteristics of the complexes. Energy decomposition analysis (EDA)—an approach for partitioning of the energy into its chemical origins—shows that the electrostatic component of the coordination is predominant, and yields relevant contribution of the covalent term, especially for the electron-withdrawing substituted ligands. The chelate effect of the bidentate ligands was noticeable when compared with substitution by two monodentate ligands.

The affinity of 18 bidentate carbonyl ligands toward the [Ca(H2O)4]2+ cation is evaluated in terms of energetic, geometric and electronic parameters of the isolated ligands and the substituted aqua complexes. The electronic effects—inductive and mesomeric—intrinsic to the molecular structure of each ligand are found to modulate the strength of the metal-ligand interaction. The effects of polysubstitution, chelation and the length of the alkyl spacers between the anchor points of the ligand are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Doskocz M, Kubas K, Frackowiak A, Gancarz R (2009) Polyhedron 28:2201–2205

    Article  CAS  Google Scholar 

  2. Yi P, Liu Z, Wang Z, Zhou J, Hou B, Li Q (2013) Int J Quantum Chem 113:1316–1324

    Article  CAS  Google Scholar 

  3. Meng L, Lin Z (2014) Comput Theor Chem 1039:1–10

    Article  CAS  Google Scholar 

  4. Gerber S, Frohlich M, Lichtenberg-Fraté H, Shabala S, Shabala L, Klipp E (2016) PLoS Comput Biol 12:1

    Article  Google Scholar 

  5. Li H, Han D, Pauletti GM, Steckl AJ (2014) Lab Chip 14:4025–4041

    Google Scholar 

  6. Fukata Y, Amano M, Kaibuchi K (2001) Trends Pharmacol Sci 22:32–39

    Article  CAS  Google Scholar 

  7. Cape RA, Terrar DA (2015) Front Physiol 6:80

    Google Scholar 

  8. Zhou W, Tang GW, Altman RB (2015) J Chem Inf Model 55:1663–1672

    Article  CAS  Google Scholar 

  9. Bristow SM, Gamble GD, Stewart A, Horne AM, Reid IR (2015) Br J Nutr 114:1868–1874

    Article  CAS  Google Scholar 

  10. Suzuki T, Kajita Y, Katsuamta H, Suzuki K (2015) J Nutr Sci Vitaminol 61:382–390

    Article  CAS  Google Scholar 

  11. Bonan RF, Bonan PRF, Batista AUD, Oliveira JE, Menezes RR, Medeiros ES (2014) Cerâmica 60:402–410

    Article  CAS  Google Scholar 

  12. Riccardis F, Izzol I, Montesarchio D, Tecilla AP (2013) Acc Chem Res 46:2781–2790

    Article  Google Scholar 

  13. Cammick EM, Veigh P, Cusker P, Timson DJ, Morphew RM, Brophy PM, Marks NJ, Mousley A, Maule A (2016) Parasit Vectors 9:46

    Article  Google Scholar 

  14. Kisiel A, Katarzyna K, Gniadek M, Maksmiuk K, Michalska A (2015) Talanta 144:398–403

    Article  CAS  Google Scholar 

  15. Benincasa M, Francescon M, Fregonese M, Gennaro R, Pengo P, Rossi P, Scrimin P, Tecilla P (2015) Bioorg Med Chem 23:7386–7393

    Article  CAS  Google Scholar 

  16. Abdel Aziz AA, Seda SH, Mohammed SF (2016) Sensors Actuators B Chem 223:566–575

    Article  CAS  Google Scholar 

  17. Xie X, Gutierrez A, Trofimov V, Szilagi I, Soldati T, Bakker E (2015) Anal Chem 87:9954–9959

    Article  CAS  Google Scholar 

  18. Lomora M, Dinu IA, Itel F, Rigo S, Spulber M, Palivan CG (2015) Macromol Rapid Commun 36:1929–1934

    Article  CAS  Google Scholar 

  19. Siegmann K, Stechi R, Widler R, Hirayama M (2013) J Appl Polym Sci 129:2727–2734

    Article  CAS  Google Scholar 

  20. Vazirian MM, Charpentier TVJ, de Oliveira Penna M, Neville A (2016) J Pet Sci Eng 137:22–32

    Article  CAS  Google Scholar 

  21. da Rosa CM, Menger RK, Gomes MT, Oliveira C (2015) Material 20:514–522

    Google Scholar 

  22. Bin M, Amer B (2015) J Pet Sci 90:124–130

    Google Scholar 

  23. Yan F, Zhang F, Bhandari N, Wang L, Dai Z, Zhang L, Liu Y, Ruan G, Kan A, Tomson M (2015) J Pet Sci 136:32–40

    Article  CAS  Google Scholar 

  24. Yi P, Liu Z, Wang Yu X, Zhou J, Hou B, Li O (2013) Int J Quantum Chem 113:1316–1324

    Article  CAS  Google Scholar 

  25. Pesonen H, Aksela R, Lassonen K (2010) J Phys Chem A 114:466–473

    Article  CAS  Google Scholar 

  26. Daniele P, Poti C, Gianguzza A, Prenesti E, Sammartano S (2008) Coord Chem Ver 252:1093–1107

    Article  CAS  Google Scholar 

  27. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  28. Despotovic I (2015) New J Chem 39:6151–6162

    Article  CAS  Google Scholar 

  29. Kowalsak-Baron A (2015) Comput Theor Chem 1057:7–14

    Article  Google Scholar 

  30. Calhorda MJ, Krapp A, Frenking G (2007) J Phys Chem A 111:2859–2869

    Article  CAS  Google Scholar 

  31. Pandey KK, Patidar P (2012) J Organomet 702:59–66

    Article  CAS  Google Scholar 

  32. Bayat M, Hopffgarten M, Salehzadeh S, Frenking G (2011) J Organomet Chem 696:2976–2984

    Article  CAS  Google Scholar 

  33. Baskaran S, Venuvanalingam P, Silvasankar C (2011) J Organomet Chem 696:2627–2634

    Article  CAS  Google Scholar 

  34. Morokuma K (1977) J Chem Phys 55:1236–1244

    Article  Google Scholar 

  35. Morokuma K (1977) Acc Chem Res 10:294–300

    Article  CAS  Google Scholar 

  36. Zieger T, Rauk A (1977) Theor Chim Acta 46:1–10

    Article  Google Scholar 

  37. Phipps MJS, Fox T, Tautermann CS, Skylaris CK (2015) R Soc Chem 44:3177–3211

    Article  CAS  Google Scholar 

  38. da Costa LM, Carneiro JWM, Paes LWC (2009) J Mol Struct THEOCHEM 911:46–51

    Article  Google Scholar 

  39. da Costa LM, Carneiro JWM, Romeiro GA, Paes LWC (2011) J Mol Model 17:243–249

    Article  CAS  Google Scholar 

  40. da Costa LM, Stoyanov SR, Damasceno RN, Carneiro JWM (2013) Int J Quantum Chem 113:2621–2628

    Article  CAS  Google Scholar 

  41. Costa LM, Ferreira GB, Carneiro JWM (2013) J Mol Model 19:2669–2677

    Article  CAS  Google Scholar 

  42. Costa LM, Paes LWC, Carneiro JWM (2012) J Braz Chem Soc 23:648–655

    Google Scholar 

  43. Costa LM, Stoyanov SR, Carneiro JWM (2012) J Mol Model 18:4389–4396

    Article  Google Scholar 

  44. Costa LM, Amorim RM, Cruzm MTM, Carneiro JWM (2012) Comput Theor Chem 999:7–12

    Article  Google Scholar 

  45. Costa LM, Carneiro JWM, Paes LWC (2011) J Mol Model 17:2061–2067

    Article  CAS  Google Scholar 

  46. Meuser MVM, Quattrociocchi DG, Costa LM, Ferreira GB, Carneiro JWM (2015) Polyhedron 102:193–200

    Article  CAS  Google Scholar 

  47. Quattrociocchi DGS, Ferreira GB, da Costa LM, Carneiro JWM (2016) Comput Theor Chem 1075:104–110

    Article  CAS  Google Scholar 

  48. Andrini O, Meinild AK, Ghezzi C, Murer H, Forster IC (2012) Am J Phys Cell Phys 302:539–554

    Article  Google Scholar 

  49. Ruan CH, Rodgers MT (2009) J Am Chem Soc 131:10918–10928

    Article  CAS  Google Scholar 

  50. Ling BP, Yan XY, Sun M, Bi SW (2016) Comput Biol Chem 60:21–31

    Article  CAS  Google Scholar 

  51. Becke AD (1992) J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  52. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtis LA (2001) J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  54. Corral I, Mo O, Yanez M, Scott A, Random L (2003) J Phys Chem A 107:10456–10461

    Article  CAS  Google Scholar 

  55. Trujillo AM, Lamsabhi O, Yanez M, Salpin J (2008) J Org Biomol 6:3695–3702

    Article  CAS  Google Scholar 

  56. Peschke M, Blades AT, Kebarle P (2000) J Am Chem Soc 122:10440–10449

    Article  CAS  Google Scholar 

  57. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  58. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024–11031

    Article  CAS  Google Scholar 

  59. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  60. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jense JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupious M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  61. Dudev M, Wang J, Dudev T, Lim C (2006) J Phys Chem B 110:1889–1895

    Article  CAS  Google Scholar 

  62. Shimzaki Y, Arai N, Dunn TJ, Yajima TM, Tani F, Ramogida CF, Storr T (2011) Dalton Trans 40:2469–2479

    Article  Google Scholar 

  63. Coupez B, Wipff G (2003) Inorg Chem 42:3693–3703

    Article  CAS  Google Scholar 

  64. Davydova EI, Sevastionova TN, Timoshkin AY, Suvorov AV, Frenking G (2004) Int J Quantum Chem 100:419–425

    Article  CAS  Google Scholar 

  65. Shinzato Y, YuKawa H, Morinaga M, Baba T, Nakai H (2007) J Alloys Compd 446:96–100

    Article  Google Scholar 

  66. Brown HC, Okamoto Y (1958) J Am Chem Soc 80:4979–4982

    Article  CAS  Google Scholar 

  67. Duvoisi S, Lima ICV, Ighor CV, Kuhnen AC (2011) Quim Nov. 34:1595–1603

  68. Rodgers MT, Armentrout PB (2000) Mass Spectrom Ver 19:215–247

    Article  CAS  Google Scholar 

  69. Ruan CH, Huang H, Rodegers MT (2008) J Am Soc Mass Spectrom 19:305–314

    Article  CAS  Google Scholar 

  70. Coupez B, Boehme C, Wipff G (2002) Phys Chem Chem Phys 4:5716–5729

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L.M.da C., J.W.de M.C. and G.B.F. acknowledge FAPERJ (Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and the Computational Canada West Grid Cluster. S.R.S. thanks Dr. John M. Villegas for discussions. D.G.S.Q. acknowledges CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and Rafhaela M. Nascimento.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stanislav R. Stoyanov or Leonardo Moreira da Costa.

Additional information

Highlights

The optimal number of spacer methylene groups of the ligand is 3–4 units.

The ligand affinity was measured by energetic, geometric and electronic parameters.

The electronic term was the major term for stabilization of the coordination interaction.

The polarization, dispersion and repulsion components were almost constant.

Polysubstitution showed that the stabilizing energy per water molecule is almost constant.

Bidentate carbonyl ligands showed strong stabilization by the chelate effect.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quattrociocchi, D.G.S., Meuser, M.V.M., Ferreira, G.B. et al. A density functional theory investigation of the interaction of the tetraaqua calcium cation with bidentate carbonyl ligands. J Mol Model 23, 60 (2017). https://doi.org/10.1007/s00894-017-3240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3240-0

Keywords

Navigation