Skip to main content
Log in

Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In recent years, halogen bonding has become an important design tool in crystal engineering, supramolecular chemistry and biosciences. The fundamentals of halogen bonding have been studied extensively with high-accuracy computational methods. Due to its non-covalency, the use of triple-zeta (or larger) basis sets is often recommended when studying halogen bonding. However, in the large systems often encountered in supramolecular chemistry and biosciences, large basis sets can make the calculations far too slow. Therefore, small basis sets, which would combine high computational speed and high accuracy, are in great demand. This study focuses on comparing how well density functional theory (DFT) methods employing small, double-zeta basis sets can estimate halogen-bond strengths. Several methods with triple-zeta basis sets are included for comparison. Altogether, 46 DFT methods were tested using two data sets of 18 and 33 halogen-bonded complexes for which the complexation energies have been previously calculated with the high-accuracy CCSD(T)/CBS method. The DGDZVP basis set performed far better than other double-zeta basis sets, and it even outperformed the triple-zeta basis sets. Due to its small size, it is well-suited to studying halogen bonding in large systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296. doi:10.1007/s00894-006-0130-2

    Article  CAS  Google Scholar 

  2. Desiraju GR, Ho PS, Kloo L et al (2013) Definition of the halogen bond. Pure Appl Chem 85:1711–1713. doi:10.1351/PAC-REC-12-05-10

    Article  CAS  Google Scholar 

  3. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747. doi:10.1039/C002129F

    Article  CAS  Google Scholar 

  4. Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56:1363–1388. doi:10.1021/jm3012068

    Article  CAS  Google Scholar 

  5. Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD (2015) Halogen bonding in supramolecular chemistry. Chem Rev 115:7118–7195. doi:10.1021/cr500674c

    Article  CAS  Google Scholar 

  6. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601. doi:10.1021/acs.chemrev.5b00484

    Article  CAS  Google Scholar 

  7. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) The halogen bond in the design of functional supramolecular materials: recent advances. Acc Chem Res 46:2686–2695. doi:10.1021/ar400103r

    Article  CAS  Google Scholar 

  8. Sarwar MG, Dragisic B, Salsberg LJ, Gouliaras C, Taylor MS (2010) Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects. J Am Chem Soc 132:1646–1653. doi:10.1021/ja9086352

    Article  CAS  Google Scholar 

  9. Erdélyi M (2012) Halogen bonding in solution. Chem Soc Rev 41:3547–3557. doi:10.1039/C2CS15292D

    Article  Google Scholar 

  10. Beale TM, Chudzinski MG, Sarwar MG, Taylor MS (2013) Halogen bonding in solution: thermodynamics and applications. Chem Soc Rev 42:1667–1680. doi:10.1039/C2CS35213C

    Article  CAS  Google Scholar 

  11. Dumele O, Wu D, Trapp N, Goroff N, Diederich F (2014) Halogen bonding of (iodoethynyl)benzene derivatives in solution. Org Lett 16:4722–4725. doi:10.1021/ol502099j

    Article  CAS  Google Scholar 

  12. Taylor MS (2015) Anion recognition in solution via halogen bonding. Top Curr Chem 359:27–48. doi:10.1007/128_2014_588

    Article  CAS  Google Scholar 

  13. Carlsson A-CC, Veiga AX, Erdélyi M (2015) Halogen bonding in solution. Top Curr Chem 359:49–76. doi:10.1007/128_2014_607

    Article  CAS  Google Scholar 

  14. Vanderkooy A, Taylor MS (2015) Solution-phase self-assembly of complementary halogen bonding polymers. J Am Chem Soc 137:5080–5086. doi:10.1021/jacs.5b00754

    Article  CAS  Google Scholar 

  15. Brown A, Beer PD (2016) Halogen bonding anion recognition. Chem Commun 52:8645–8658. doi:10.1039/c6cc03638d

    Article  CAS  Google Scholar 

  16. Langton MJ, Robinson SW, Marques I, Félix V, Beer PD (2014) Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts. Nat Chem 6:1039–1043. doi:10.1038/nchem.2111

    Article  CAS  Google Scholar 

  17. Zierkiewicz W, Bieńko DC, Michalska D, Zeegers-Huyskens T (2015) Theoretical investigation of the halogen bonded complexes between carbonyl bases and molecular chlorine. J Comput Chem 36:821–832. doi:10.1002/jcc.23860

    Article  CAS  Google Scholar 

  18. Lo R, Ganguly B (2015) Revealing halogen bonding interactions with anomeric systems: an ab initio quantum chemical studies. J Mol Graph Model 55:123–133. doi:10.1016/j.jmgm.2014.11.008

    Article  CAS  Google Scholar 

  19. Riley KE, Hobza P (2013) The relative roles of electrostatics and dispersion in the stabilization of halogen bonds. Phys Chem Chem Phys 15:17742–17751. doi:10.1039/c3cp52768a

    Article  CAS  Google Scholar 

  20. Esrafili MD, Mohammadirad N (2013) Insights into the strength and nature of carbene⋯halogen bond interactions: a theoretical perspective. J Mol Model 19:2559–2566. doi:10.1007/s00894-013-1804-1

    Article  CAS  Google Scholar 

  21. Kozuch S, Martin JML (2013) Halogen bonds: benchmarks and theoretical analysis. J Chem Theory Comput 9:1918–1931. doi:10.1021/ct301064t

    Article  CAS  Google Scholar 

  22. Tsuzuki S, Uchimaru T, Wakisaka A, Ono T, Sonoda T (2013) CCSD(T) level interaction energy for halogen bond between pyridine and substituted iodobenzenes: origin and additivity of substituent effects. Phys Chem Chem Phys 15:6088–6096. doi:10.1039/c3cp43693d

    Article  CAS  Google Scholar 

  23. Řezáč J, Riley KE, Hobza P (2012) Benchmark calculations of noncovalent interactions of halogenated molecules. J Chem Theory Comput 8:4285–4292. doi:10.1021/ct300647k

    Article  Google Scholar 

  24. Tsuzuki S, Wakisaka A, Ono T, Sonoda T (2012) Magnitude and origin of the attraction and directionality of the halogen bonds of the complexes of C6F5X and C6H5X (X = I, Br, Cl and F) with pyridine. Chemistry 18:951–960. doi:10.1002/chem.201102562

    Article  CAS  Google Scholar 

  25. Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theory Comput 4:232–242. doi:10.1021/ct700216w

    Article  CAS  Google Scholar 

  26. Legon AC (2014) A reduced radial potential energy function for the halogen bond and the hydrogen bond in complexes B⋯XY and B⋯HX, where X and Y are halogen atoms. Phys Chem Chem Phys 16:12415–12421. doi:10.1039/c4cp01444h

    Article  CAS  Google Scholar 

  27. Wolters LP, Schyman P, Pavan MJ (2014) The many faces of halogen bonding: a review of theoretical models and methods. WIREs Comput Mol Sci 4:523–540. doi:10.1002/wcms.1189

    Article  CAS  Google Scholar 

  28. Ibrahim MAA (2011) Molecular mechanical study of halogen bonding in drug discovery. J Comput Chem 32:2564–2574. doi:10.1002/jcc.21836

    Article  CAS  Google Scholar 

  29. Ibrahim MAA (2012) AMBER empirical potential describes the geometry and energy of noncovalent halogen interactions better than advanced semiempirical quantum mechanical method PM6-DH2X. J Phys Chem B 116:3659–3669. doi:10.1021/jp3003905

    Article  CAS  Google Scholar 

  30. Soteras Gutiérrez I, Lin F-Y, Vanommeslaeghe K, Lemkul JA, Armacost KA, Brooks CL 3rd, MacKerell AD Jr (2016) Parametrization of halogen bonds in the CHARMM general force field: improved treatment of ligand-protein interactions. Bioorg Med Chem 24:4812–4825. doi:10.1016/j.bmc.2016.06.034

  31. Jorgensen WL, Schyman P (2012) Treatment of halogen bonding in the OPLS-AA force field: application to potent Anti-HIV agents. J Chem Theory Comput 8:3895–3901. doi:10.1021/ct300180w

    Article  CAS  Google Scholar 

  32. Řezáč J, Hobza P (2013) Describing noncovalent interactions beyond the common approximations: how accurate is the “gold standard”, CCSD(T) at the complete basis set limit? J Chem Theory Comput 9:2151–2155. doi:10.1021/ct400057w

    Article  Google Scholar 

  33. Lu Y-X, Zou J-W, Fan J-C, Zhao W-N, Jiang Y-J, Yu Q-S (2009) Ab initio calculations on halogen-bonded complexes and comparison with density functional methods. J Comput Chem 30:725–732. doi:10.1002/jcc.21094

    Article  CAS  Google Scholar 

  34. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045–1052. doi:10.1021/ci600510j

    Article  CAS  Google Scholar 

  35. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571–1586. doi:10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P

    Article  CAS  Google Scholar 

  36. Boys SF, Bernardi F (2006) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. doi:10.1080/00268977000101561

    Article  Google Scholar 

  37. Řezáč J, Hobza P (2016) Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem Rev 116:5038–5071. doi:10.1021/acs.chemrev.5b00526

    Article  Google Scholar 

  38. Kolář MH, Hobza P (2016) Computer modeling of halogen bonds and other σ-hole interactions. Chem Rev 116:5155–5187. doi:10.1021/acs.chemrev.5b00560

    Article  Google Scholar 

  39. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. doi:10.1039/b508541a

    Article  CAS  Google Scholar 

  40. Weigend F (2006) Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065. doi:10.1039/b515623h

    Article  CAS  Google Scholar 

  41. Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133:134105. doi:10.1063/1.3484283

    Article  Google Scholar 

  42. Peterson KA (2003) Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. J Chem Phys 119:11099–15. doi:10.1063/1.1622923

    Article  CAS  Google Scholar 

  43. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007. doi:10.1063/1.456153

    Article  CAS  Google Scholar 

  44. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796. doi:10.1063/1.462569

    Article  CAS  Google Scholar 

  45. Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358. doi:10.1063/1.464303

    Article  CAS  Google Scholar 

  46. Wilson AK, Woon DE, Peterson KA, Dunning TH (1999) Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J Chem Phys 110:7667. doi:10.1063/1.478678

    Article  CAS  Google Scholar 

  47. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J Chem Phys 119:11113. doi:10.1063/1.1622924

    Article  CAS  Google Scholar 

  48. Peterson KA, Shepler BC, Figgen D, Stoll H (2006) On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J Phys Chem A 110:13877–13883. doi:10.1021/jp065887l

    Article  CAS  Google Scholar 

  49. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299. doi:10.1063/1.448975

    Article  CAS  Google Scholar 

  50. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS (2001) Addition of polarization and diffuse functions to the LANL2DZ basis set for P-Block elements. J Phys Chem A 105:8111–8116. doi:10.1021/jp011945l

    Article  CAS  Google Scholar 

  51. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can J Chem 70:560–571. doi:10.1139/v92-079

    Article  CAS  Google Scholar 

  52. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J Phys Chem 96:6630–6636. doi:10.1021/j100195a022

    Article  CAS  Google Scholar 

  53. Canal Neto A, Muniz EP, Centoducatte R, Jorge FE (2005) Gaussian basis sets for correlated wave functions. Hydrogen, helium, first- and second-row atoms. J Mol Struct THEOCHEM 718:219–224. doi:10.1016/j.theochem.2004.11.037

    Article  CAS  Google Scholar 

  54. Barbieri PL, Fantin PA, Jorge FE (2006) Gaussian basis sets of triple and quadruple zeta valence quality for correlated wave functions. Mol Phys 104:2945–2954. doi:10.1080/00268970600899018

    Article  CAS  Google Scholar 

  55. Fantin PA, Barbieri PL, Canal Neto A, Jorge FE (2007) Augmented Gaussian basis sets of triple and quadruple zeta valence quality for the atoms H and from Li to Ar: applications in HF, MP2, and DFT calculations of molecular dipole moment and dipole (hyper) polarizability. J Mol Struct (THEOCHEM) 810:103–111. doi:10.1016/j.theochem.2007.02.003

    Article  CAS  Google Scholar 

  56. Camiletti GG, Machado SF, Jorge FE (2008) Gaussian basis set of double zeta quality for atoms K through Kr: application in DFT calculations of molecular properties. J Comput Chem 29:2434–2444. doi:10.1002/jcc.20996

    Article  CAS  Google Scholar 

  57. Machado SF, Camiletti GG, Neto AC, Jorge FE, Jorge RS (2009) Gaussian basis set of triple zeta valence quality for the atoms from K to Kr: application in DFT and CCSD(T) calculations of molecular properties. Mol Phys 107:1713–1727. doi:10.1080/00268970903042258

    Article  CAS  Google Scholar 

  58. Camiletti GG, Canal Neto A, Jorge FE, Machado SF (2009) Augmented Gaussian basis sets of double and triple zeta valence qualities for the atoms K and Sc–Kr: applications in HF, MP2, and DFT calculations of molecular electric properties. J Mol Struct (THEOCHEM) 910:122–125. doi:10.1016/j.theochem.2009.06.024

    Article  CAS  Google Scholar 

  59. Barros CL, de Oliveira PJP, Jorge FE, Canal Neto A, Campos M (2010) Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol Phys 108:1965–1972. doi:10.1080/00268976.2010.499377

    Article  CAS  Google Scholar 

  60. de Oliveira PJP, Barros CL, Jorge FE, Canal Neto A, Campos M (2010) Augmented Gaussian basis set of double zeta valence quality for the atoms Rb and Y–Xe: application in DFT calculations of molecular electric properties. J Mol Struct (THEOCHEM) 948:43–46. doi:10.1016/j.theochem.2010.02.017

    Article  Google Scholar 

  61. Campos CT, Jorge FE (2012) Triple zeta quality basis sets for atoms Rb through Xe: application in CCSD(T) atomic and molecular property calculations. Mol Phys 111:167–173. doi:10.1080/00268976.2012.709282

    Article  Google Scholar 

  62. Martins LSC, de Souza FAL, Ceolin GA, Jorge FE, de Berrêdo RC, Campos CT (2013) Augmented Gaussian basis sets for the elements K, Sc–Kr, Rb, and Y–Xe: application in HF, MP2, and DFT calculations of molecular electric properties. Comput Theor Chem 1013:62–69. doi:10.1016/j.comptc.2013.03.004

    Article  CAS  Google Scholar 

  63. Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241. doi:10.1007/s00214-007-0310-x

    Article  Google Scholar 

  64. Bauzá A, Alkorta I, Frontera A, Elguero J (2013) On the reliability of pure and hybrid DFT methods for the evaluation of halogen, chalcogen, and pnicogen bonds involving anionic and neutral electron donors. J Chem Theory Comput 9:5201–5210. doi:10.1021/ct400818v

    Article  Google Scholar 

  65. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. doi:10.1063/1.478522

    Article  CAS  Google Scholar 

  66. Kim K, Jordan KD (1994) Comparison of density functional and MP2 calculations on the water monomer and dimer. J Phys Chem 98:10089–10094. doi:10.1021/j100091a024

    Article  CAS  Google Scholar 

  67. Roper LC, Präsang C, Kozhevnikov VN, Whitwood AC, Karadakov PB, Bruce DW (2010) Experimental and theoretical study of halogen-bonded complexes of DMAP with Di- and triiodofluorobenzenes. A complex with a very short N⋯I halogen bond. Cryst Growth Des 10:3710–3720. doi:10.1021/cg100549u

    Article  CAS  Google Scholar 

  68. Saccone M, Dichiarante V, Forni A et al (2015) Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning. J Mater Chem C 3:759–768. doi:10.1039/C4TC02315C

    Article  CAS  Google Scholar 

  69. Lucassen ACB, Karton A, Leitus G, Shimon LJW, Martin JML, van der Boom ME (2007) Co-crystallization of sym-triiodo-trifluorobenzene with bipyridyl donors: consistent formation of two instead of anticipated three N⋯I halogen bonds. Cryst Growth Des 7:386–392. doi:10.1021/cg0607250

    Article  CAS  Google Scholar 

  70. Priimagi A, Cavallo G, Forni A et al (2012) Halogen bonding versus hydrogen bonding in driving self-assembly and performance of light-responsive supramolecular polymers. Adv Funct Mater 22:2572–2579. doi:10.1002/adfm.201200135

    Article  CAS  Google Scholar 

  71. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473. doi:10.1002/jcc.20078

    Article  CAS  Google Scholar 

  72. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  73. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. doi:10.1063/1.3382344

    Article  Google Scholar 

  74. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi:10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  75. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106. doi:10.1063/1.2834918

    Article  Google Scholar 

  76. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. doi:10.1039/b810189b

    Article  CAS  Google Scholar 

  77. Becke AD (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys 107:8554. doi:10.1063/1.475007

    Article  CAS  Google Scholar 

  78. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101. doi:10.1063/1.2370993

    Article  Google Scholar 

  79. Zhao Y, Truhlar DG (2006) Density functional for spectroscopy: no long-range self-interaction error, good performance for rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A 110:13126–13130. doi:10.1021/jp066479k

    Article  CAS  Google Scholar 

  80. Peverati R, Truhlar DG (2011) Improving the accuracy of hybrid meta-GGA density functionals by range separation. J Phys Chem Lett 2:2810–2817. doi:10.1021/jz201170d

    Article  CAS  Google Scholar 

  81. Peverati R, Truhlar DG (2012) Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys Chem Chem Phys 14:16187–16191. doi:10.1039/c2cp42576a

    Article  CAS  Google Scholar 

  82. Riley KE, Tran K-A, Lane P, Murray JS, Politzer P (2016) Comparative analysis of electrostatic potential maxima and minima on molecular surfaces, as determined by three methods and a variety of basis sets. J Comput Sci 17:273–284. doi:10.1016/j.jocs.2016.03.010

    Article  Google Scholar 

Download references

Acknowledgements

A.P. greatly acknowledges the Academy of Finland Research Fellowship Program (Decision Nos. 277091 and 284553) and the Emil Aaltonen Foundation for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arri Priimagi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siiskonen, A., Priimagi, A. Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths. J Mol Model 23, 50 (2017). https://doi.org/10.1007/s00894-017-3212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3212-4

Keywords

Navigation