Skip to main content
Log in

Systematic analysis of structural and spectroscopic properties of neptunimine (HN=NpH2) and plutonimine (HN=PuH2)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures, stabilities, nature of bonding, and spectroscopic properties of the new actinide imine molecules, neptunimine (HN=NpH2) and plutonimine (HN=PuH2), in the gas phase have been systematically explored at different levels of theory. Our calculation indicates that HN=AnH2 (An=Np, Pu) should be nonplanar and have a quartet (\( {\tilde{\mathrm{X}}}^4\mathrm{A} \)) and quintet (\( {\tilde{\mathrm{X}}}^5\mathrm{A} \)) ground state, respectively. The nature of the chemical bonding in these molecules were investigated by employing topological methods including electron localization function (ELF), atoms in molecules (AIM) as well as natural bond orbital analysis (NBO). The results showed that these actinide complexes possess relatively strong An=N multiple bonds between the An 6d-5f hybrid orbitals with N 2s-2p orbitals. The charge decomposition analysis (CDA) diagram demonstrated that the transition of electrons mainly happened inside the AnH2 of HN=AnH2. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were implemented. The IR and Raman spectra were theoretically simulated as a convenient way to confirm the existence of the actinide imine complexes in further experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brennan JG, Andersen RA (1985) J Am Chem Soc 107:514–516

    Article  CAS  Google Scholar 

  2. Stevens RC, Bau R, Cramer RE, Afzal D, Gilje JW, Koetzle TF (1990) Organometallics 9:694–697

    Article  CAS  Google Scholar 

  3. Gagliardi L, Pyykkö P (2004) Angew Chem Int Ed 43:1573–1576

    Article  CAS  Google Scholar 

  4. Pyykkö P, Riedel S, Patzschke M (2005) Chem Eur J 11:3511–3520

    Article  Google Scholar 

  5. Burns CJ (2005) Science 309:1823–1824

    Article  CAS  Google Scholar 

  6. Evans WJ, Kozimor SA, Ziller JW (2005) Science 309:1835–1838

    Article  CAS  Google Scholar 

  7. Hayton TW, Boncella JM, Scott BL, Palmer PD, Batista ER, Hay PJ (2005) Science 310:1941–1943

    Article  CAS  Google Scholar 

  8. Hayton TW, Boncella JM, Scott BL, Batista ER, Hay PJ (2006) J Am Chem Soc 128:10549–10559

    Article  CAS  Google Scholar 

  9. Frenking G, Tonner R (2007) Nature 446:276–277

    Article  CAS  Google Scholar 

  10. Lyon JT, Hu HS, Andrews L, Li J (2007) PNAS 104:18919–18924

    Article  CAS  Google Scholar 

  11. Graves CR, Yang P, Kozimor SA, Vaughn AE, Clark DL, Conradson SD, Schelter EJ, Scott BL, Thompson JD, Hay PJ, Morris DE, Kiplinger JL (2008) J Am Chem Soc 130:5272–5285

    Article  CAS  Google Scholar 

  12. Cantat T, Arliguie T, Noel A, Thuery P, Ephritikhine M, Le Floch P, Mezailles N (2009) J Am Chem Soc 131:963–972

    Article  CAS  Google Scholar 

  13. Thomson RK, Cantat T, Scott BL, Morris DL, Batista ER, Kiplinger JL (2010) Nat Chem 2:723–729

    Article  CAS  Google Scholar 

  14. Fox AR, Arnold PL, Cummins CC (2010) J Am Chem Soc 132:3250–3251

    Article  CAS  Google Scholar 

  15. Wang XF, Andrews L, Vlaisavljevich B, Gagliardi L (2011) Inorg Chem 50:3826–3831

    Article  CAS  Google Scholar 

  16. King DM, Tuna F, McInnes EL, McMaster J, Lewis W, Blake AJ, Liddle ST (2013) Nat Chem 5:482–488

    Article  CAS  Google Scholar 

  17. Fox AR, Bart SC, Meyer K, Cummins CC (2008) Nature 455:341–349

    Article  CAS  Google Scholar 

  18. Wang XF, Andrews L, Marsden CJ (2007) Chem Eur J 13:5601–5606

    Article  CAS  Google Scholar 

  19. Wang XF, Andrews L, Marsden CJ (2008) Chem Eur J 14:9192–9201

    Article  CAS  Google Scholar 

  20. Li P, Niu WX, Gao T (2014) RSC Adv 4:29806–29817

    Article  CAS  Google Scholar 

  21. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  24. Becke AD (1998) Phys Rev A 38:3098–3100

    Article  Google Scholar 

  25. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  26. Kuchle W, Dolg M, Stoll H, Preuss H (1994) J Chem Phys 100:7535–7542

    Article  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN et al. (2004) Gaussian 03, revision E.01. Gaussian, Inc, Wallingford

    Google Scholar 

  28. Michelini MC, Russo N, Sicilia E (2006) Angew Chem Int Ed 45:1095–1099

    Article  CAS  Google Scholar 

  29. Alikhani ME, Michelini MC, Russo N, Silvi B (2008) J Phys Chem A 112:12966–12974

    Article  CAS  Google Scholar 

  30. Zhou J, Schlegel HB (2010) J Phys Chem A 114:8613–8617

    Article  CAS  Google Scholar 

  31. Li P, Niu WX, Gao T, Wang HY (2014) Int J Quantum Chem 114:760–768

    Article  CAS  Google Scholar 

  32. De Almeida KJ, Duarte HA (2010) Organometallics 29:3735–3745

    Article  Google Scholar 

  33. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  34. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  35. Savin A, Nesper R, Wengert S, Fassler TR (1997) Angew Chem Int Ed Engl 36:1808–1832

    Article  CAS  Google Scholar 

  36. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford

    Google Scholar 

  37. Hoffmann R (1988) Solids and surfaces: a chemist’s view of bonding in extended structures. VCH, New York

    Google Scholar 

  38. Malecki JG (2010) Polyhedron 29:1973–1979

    Article  CAS  Google Scholar 

  39. Dapprich S, Frenking G (1995) J Phys Chem 99:9352–9362

    Article  CAS  Google Scholar 

  40. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452

    Article  CAS  Google Scholar 

  41. Bakken V, Millam JM, Schlegel HB (1999) J Chem Phys 111:8773–8777

    Article  CAS  Google Scholar 

  42. Michelini MC, Russo N, Sicilis E (2007) J Am Chem Soc 129:4229–4239

    Article  CAS  Google Scholar 

  43. Di Santo E, Michelini MC, Russo N (2009) Organometallics 28:3716–3726

    Article  CAS  Google Scholar 

  44. Palusiak M, Krygowski TM (2007) Chem Eur J 13:7996–8006

    Article  CAS  Google Scholar 

  45. Farrugia LJ, Senn HM (2010) J Phys Chem A 114:13418–13433

    Article  CAS  Google Scholar 

  46. De Almeida KJ, Ramalho TC, Neto JL, Santiago RT, Felicíssimo VC, Duarte HA (2013) Organometallics 32:989–999

    Article  Google Scholar 

  47. Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  48. Du J, Sun X, Chen J, Zhang L, Jiang G (2014) Dalton Trans 43:5574–5579

    Article  CAS  Google Scholar 

  49. Vyboishchikov SF, Sierraalta A, Frenking G (1996) J Comput Chem 18:416–429

    Article  Google Scholar 

  50. Weinhold F, NBO 5.0 Program Manual

Download references

Acknowledgments

We are very grateful to Dr. Sobereva for many helpful discussions and providing us with the Multiwfn package. Computer time made available by the Center of High Performance Computing at Physics discipline of Sichuan University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxia Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Niu, W. & Gao, T. Systematic analysis of structural and spectroscopic properties of neptunimine (HN=NpH2) and plutonimine (HN=PuH2). J Mol Model 21, 316 (2015). https://doi.org/10.1007/s00894-015-2856-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2856-1

Keywords

Navigation