Skip to main content

Advertisement

Log in

Ligand similarity guided receptor selection enhances docking accuracy and recall for non-nucleoside HIV reverse transcriptase inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Non-nucleoside reverse transcriptase inhibitors (NNRTI) are allosteric inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), a viral polymerase essential to infection. Despite the availability of >150 NNRTI-bound RT crystal structures, rational design of new NNRTI remains challenging because of the variability of their induced fit, hydrophobic binding patterns. Docking NNRTI yields inconsistent results that vary markedly depending on the receptor structure used, as only 27% of the >20k cross-docking calculations we performed using known NNRTI were accurate. In order to determine if a hospitable receptor for docking could be selected a priori, we evaluated more than 40 chemical descriptors for their ability to pre-select a best receptor for NNRTI cross-docking. The receptor selection was based on similarity scores between the bound- and target-ligands generated by each descriptor. The top descriptors were able to double the probability of cross-docking accuracy over random receptor selection. Additionally, recall of known NNRTI from a large library of similar decoys was increased using the same approach. The results demonstrate the utility of pre-selecting receptors when docking into difficult targets.

Cross-docking accuracy increases when using chemical descriptors to determine the NNRTI with maximum similarity to the new compound and then docking into its respective receptor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949. doi:10.1038/nrd1549

    Article  CAS  Google Scholar 

  2. Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9(4):273–276. doi:10.1038/nrd3139

    Article  CAS  Google Scholar 

  3. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931. doi:10.1021/jm050362n

    Article  CAS  Google Scholar 

  4. Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11(8):3016–3034. doi:10.3390/ijms11083016

    Article  CAS  Google Scholar 

  5. Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn LA, Morris GM, Orozco M, Pertinhez TA, Rizzi M, Sotriffer CA (2008) Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 51(20):6237–6255. doi:10.1021/jm800562d

    Article  CAS  Google Scholar 

  6. Changeux JP (2011) 50th anniversary of the word “allosteric”. Protein Sci: Publ Protein Soc 20(7):1119–1124. doi:10.1002/pro.658

    Article  CAS  Google Scholar 

  7. Smerdon SJ, Jager J, Wang J, Kohlstaedt LA, Chirino AJ, Friedman JM, Rice PA, Steitz TA (1994) Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 91(9):3911–3915

    Article  CAS  Google Scholar 

  8. Huang Z, Mou L, Shen Q, Lu S, Li C, Liu X, Wang G, Li S, Geng L, Liu Y, Wu J, Chen G, Zhang J (2014) ASD v2.0: updated content and novel features focusing on allosteric regulation. Nucleic Acids Res 42(Database issue):D510–516. doi:10.1093/nar/gkt1247

    Article  CAS  Google Scholar 

  9. Sluis-Cremer N, Tachedjian G (2008) Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors. Virus Res 134(1–2):147–156. doi:10.1016/j.virusres.2008.01.002

    Article  CAS  Google Scholar 

  10. NIAID (1989) ChemDB HIV, opportunistic infection and tuberculosis therapeutics database (http://chemdb.niaid.nih.gov/). Accessed February 20 2013

  11. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  12. Ren J, Stammers DK (2008) Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Virus Res 134(1–2):157–170. doi:10.1016/j.virusres.2007.12.018

    Article  CAS  Google Scholar 

  13. Das K, Bauman JD, Rim AS, Dharia C, Clark AD Jr, Camarasa MJ, Balzarini J, Arnold E (2011) Crystal structure of tert-butyldimethylsilyl-spiroaminooxathioledioxide-thymine (TSAO-T) in complex with HIV-1 reverse transcriptase (RT) redefines the elastic limits of the non-nucleoside inhibitor-binding pocket. J Med Chem 54(8):2727–2737. doi:10.1021/jm101536x

    Article  CAS  Google Scholar 

  14. Krzeminska A, Paneth P, Moliner V, Swiderek K (2014) Binding isotope effects as a tool for distinguishing hydrophobic and hydrophilic binding sites of HIV-1 RT. J Phys Chem B. doi:10.1021/jp506119h

    Google Scholar 

  15. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196. doi:10.1021/jm051256o

    Article  CAS  Google Scholar 

  16. Ragno R, Frasca S, Manetti F, Brizzi A, Massa S (2005) HIV-reverse transcriptase inhibition: inclusion of ligand-induced fit by cross-docking studies. J Med Chem 48(1):200–212. doi:10.1021/jm0493921

    Article  CAS  Google Scholar 

  17. Tuccinardi T, Botta M, Giordano A, Martinelli A (2010) Protein kinases: docking and homology modeling reliability. J Chem Inf Model 50(8):1432–1441. doi:10.1021/ci100161z

    Article  CAS  Google Scholar 

  18. Rockey WM, Elcock AH (2006) Structure selection for protein kinase docking and virtual screening: homology models or crystal structures? Curr Protein Pept Sci 7(5):437–457

    Article  CAS  Google Scholar 

  19. Verdonk ML, Mortenson PN, Hall RJ, Hartshorn MJ, Murray CW (2008) Protein-ligand docking against non-native protein conformers. J Chem Inf Model 48(11):2214–2225. doi:10.1021/ci8002254

    Article  CAS  Google Scholar 

  20. Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282(5394):1669–1675

    Article  CAS  Google Scholar 

  21. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

  22. Discovery Studio (2012) Accelrys Inc, San Diego

  23. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17(1):57–61

    CAS  Google Scholar 

  24. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. doi:10.1002/jcc.21334

    CAS  Google Scholar 

  25. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

  26. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi:10.1002/jcc.20289

    Article  CAS  Google Scholar 

  27. Pipeline Pilot (2012) Accelrys Inc, San Diego

  28. Labute P (2010) LowModeMD--implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J Chem Inf Model 50(5):792–800. doi:10.1021/ci900508k

    Article  CAS  Google Scholar 

  29. MOE (2011.10). 2011.10 edn. Chemical Computing Group Inc, Montreal, QC, Canada

  30. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminformatics 3:33. doi:10.1186/1758-2946-3-33

    Article  Google Scholar 

  31. Berenger F, Voet A, Lee XY, Zhang KY (2014) A rotation-translation invariant molecular descriptor of partial charges and its use in ligand-based virtual screening. J Cheminformatics 6:23. doi:10.1186/1758-2946-6-23

    Article  Google Scholar 

  32. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594. doi:10.1021/jm300687e

    Article  CAS  Google Scholar 

  33. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112(3):535–542

    Article  CAS  Google Scholar 

  34. Nichols SE, Domaoal RA, Thakur VV, Tirado-Rives J, Anderson KS, Jorgensen WL (2009) Discovery of wild-type and Y181C mutant non-nucleoside HIV-1 reverse transcriptase inhibitors using virtual screening with multiple protein structures. J Chem Inf Model 49(5):1272–1279. doi:10.1021/ci900068k

    Article  CAS  Google Scholar 

  35. Paris KA, Haq O, Felts AK, Das K, Arnold E, Levy RM (2009) Conformational landscape of the human immunodeficiency virus type 1 reverse transcriptase non-nucleoside inhibitor binding pocket: lessons for inhibitor design from a cluster analysis of many crystal structures. J Med Chem 52(20):6413–6420. doi:10.1021/jm900854h

    Article  CAS  Google Scholar 

  36. Leach AR (1994) Ligand docking to proteins with discrete side-chain flexibility. J Mol Biol 235(1):345–356

    Article  CAS  Google Scholar 

  37. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49(2):534–553. doi:10.1021/jm050540c

    Article  CAS  Google Scholar 

  38. Esnouf RM, Ren J, Hopkins AL, Ross CK, Jones EY, Stammers DK, Stuart DI (1997) Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor. Proc Natl Acad Sci U S A 94(8):3984–3989

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Public Health Service grants 5P30-AI-50409 (CFAR), and by the Department of Veterans Affairs. Pipeline Pilot and Discovery Studio software were received as Academic Achievement awards from Accelrys Corporation. The authors would like to thank Dr. James J. Kohler and Dr. Bryan D. Cox for their critical reading of the manuscript.

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond F. Schinazi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

A comparison of receptor selection by three MOE descriptors available in both 2D and 3D formats. The atom type distance (2D: TGD/3D: TAD), atom type triangle (TGT/TAT), and pharmacophore triangle (gpiDAPH3/piDAPH3) descriptors were used (JPEG 781 kb)

Fig. S2

ROC curves showing recall of accurate poses of 87 solved NNRTI from cross-docking into all 87 available receptors using the docking score from AutoDock Vina (JPEG 959 kb)

Table S1

Variability of NNRTI-RT solved structures (DOC 71 kb)

Table S2

Cross-docking accuracy per PDB (DOC 139 kb)

Table S3

Cross-docking accuracy into receptors selected by similarity descriptors (non-statistically significant) (DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanton, R.A., Nettles, J.H. & Schinazi, R.F. Ligand similarity guided receptor selection enhances docking accuracy and recall for non-nucleoside HIV reverse transcriptase inhibitors. J Mol Model 21, 282 (2015). https://doi.org/10.1007/s00894-015-2826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2826-7

Keywords

Navigation