Skip to main content
Log in

Chalcogen-bonded complexes. Selenium-bound adducts of NH3, H2O, PH3, and H2S with OCSe, SCSe, and CSe2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Recent ab initio investigations of some complexes formed between carbon dioxide and its analogues carbonyl sulfide, carbonyl selenide, carbon disulfide, and thiocarbonyl selenide and the common bases ammonia, water, phosphine, and hydrogen sulfide have revealed significant differences between the properties of those complexes bound through the oxygen atom of the electron acceptor and their counterparts in which the interaction takes place through a sulfur atom. In each case the interaction is weak, but the structures, interaction energies, and vibrational spectra of the complexes show some regular variations in behavior as the base and the acid are systematically changed. The adducts bound through sulfur present examples of the type of non-covalent interaction known as the chalcogen bond. In this paper we extend the range of electron acceptors to include carbon diselenide, and we explore the effects of substituting selenium for sulfur as the acceptor atom in the complexes of OCSe, SCSe, and CSe2. These adducts are also classified as chalcogen-bonded complexes, and have many features in common with the sulfur-bonded species, but also exhibit some noticeable differences between the two series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosenfield RE Jr, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860–4862

  2. Burling FT, Goldstein BM (1992) J Am Chem Soc 114:2313–2320

    Article  CAS  Google Scholar 

  3. Minyaev RM, Minkin VI (1998) Can J Chem 76:776–788

    Article  CAS  Google Scholar 

  4. Iwaoka M, Takemoto S, Tomoda S (2002) J Am Chem Soc 124:10613–10620

    Article  CAS  Google Scholar 

  5. Werz DB, Gleiter R, Rominger F (2002) J Am Chem Soc 124:10638–10639

    Article  CAS  Google Scholar 

  6. Sanz P, Yanez M, Mo O (2002) J Phys Chem A 106:4661–4668

    Article  CAS  Google Scholar 

  7. Sanz P, Mo O, Yanez M (2003) Phys Chem Chem Phys 5:2942–2947

    Article  CAS  Google Scholar 

  8. Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH (2005) J Am Chem Soc 127:3184–3190

    Article  CAS  Google Scholar 

  9. Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) J Am Chem Soc 128:2666–2674

    Article  CAS  Google Scholar 

  10. Bleiholder C, Gleiter R, Werz DB, Köppel H (2007) Inorg Chem 46:2249–2260

    Article  CAS  Google Scholar 

  11. Politzer P, Murray JS, Lane P (2007) Intern J Quantum Chem 107:3046–3052

    Article  CAS  Google Scholar 

  12. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  14. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) J Mol Model 14:699–704

    Article  CAS  Google Scholar 

  15. Murray JS, Lane P, Politzer P (2008) Intern J Quantum Chem 108:2770–2781

    Article  CAS  Google Scholar 

  16. Choudhary A, Gandla D, Krow GR, Raines RT (2009) J Am Chem Soc 131:7244–7246

    Article  CAS  Google Scholar 

  17. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  18. Wang W, Ji B, Zhang Y (2009) J Phys Chem A 113:8132–8135

    Article  Google Scholar 

  19. Shishkin OV, Omelchenko IV, Kalyuzhny AL, Paponov BV (2010) Struct Chem 21:1005–1011

    Article  CAS  Google Scholar 

  20. Scheiner S (2011) J Chem Phys 134:164313

    Article  Google Scholar 

  21. Junming L, Yunxiang L, Subin Y, Weiliang Z (2011) Struct Chem 22:757–763

    Article  Google Scholar 

  22. Sanchez-Sanz G, Alkorta I, Elguero J (2011) Mol Phys 109:2543–2552

    Article  CAS  Google Scholar 

  23. Milov AA, Minyaev RM, Minkin VI (2011) J Phys Chem A 115:12973–12982

    Article  CAS  Google Scholar 

  24. Iwaoka M, Isozumi N (2012) Molecules 17:7266–7283

    Article  CAS  Google Scholar 

  25. Li Q-Z, Li R, Guo P, Li H, Li W-Z, Cheng J-B (2012) Comput Theoret Chem 980:56–61

    Article  CAS  Google Scholar 

  26. Adhikari U, Scheiner S (2012) J Phys Chem A 116:3487–3497

    Article  CAS  Google Scholar 

  27. Manna D, Mugesh G (2012) J Am Chem Soc 134:4269–4279

    Article  CAS  Google Scholar 

  28. Scheiner S (2013) Cryst Eng Commun 15:3119–3124

    Article  CAS  Google Scholar 

  29. Scheiner S (2013) Accounts Chem Res 46:280–288

    Article  CAS  Google Scholar 

  30. Scheiner S (2013) Intern J Quantum Chem 113:1609–1620

    Article  CAS  Google Scholar 

  31. Brezgunova ME, Lieffrig J, Aubert E, Dahaoui S, Fertey P, Lebegue S, Angyan JG, Fourmigue M, Espinosa E (2013) Cryst Growth Des 13:3283–3289

    Article  CAS  Google Scholar 

  32. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  33. Minyaev RM, Gribanova TN, Minkin VI. Comprehensive Inorganic Chemistry. II. From Elements to Applications (2013) 9:109–132

  34. Bauza A, Alkorta I, Frontera A, Elguero J (2013) J Chem Theory Comput 9:5201–5210

    Article  CAS  Google Scholar 

  35. Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions. Theory and experiment. RSC, Cambridge

    Google Scholar 

  36. Latimer WM, Rodebush WH (1920) J Am Chem Soc 42:1419–1433

    Article  CAS  Google Scholar 

  37. Shigorin DN (1959) Spectrochim Acta 14:198–212

    Article  CAS  Google Scholar 

  38. Dumas J-M, Peurichard H, Gomel M (1978) J Chem Res S:54–57

    Google Scholar 

  39. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  40. Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  41. Ramasami P, Ford TA (2014) Mol Phys 112:683–693

    Article  CAS  Google Scholar 

  42. Ramasami P, Ford TA (2014) J Mol Structure 1072:28–31

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian-09, Revision D.01. Gaussian Inc, Wallingford

  44. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  45. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  46. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  47. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  48. Peterson KA, Woon DE, Dunning TH Jr (1994) J Chem Phys 100:7410–7415

    Article  CAS  Google Scholar 

  49. Wilson A, van Mourik T, Dunning TH Jr (1997) J Mol Structure (Theochem) 388:339–349

    Article  Google Scholar 

  50. Liu B, McLean AD (1973) J Chem Phys 59:4557–4558

    Article  CAS  Google Scholar 

  51. Boys SF, Bernardi F (1970) Mol Phys 19:553–556

    Article  CAS  Google Scholar 

  52. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  53. Shoemaker RL, Flygare WH (1970) Chem Phys Letters 6:576–578

    Article  CAS  Google Scholar 

  54. Benkova Z, Sadlej AJ (2004) Mol Phys 102:687–699

    Article  CAS  Google Scholar 

  55. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theoret Chem 998:2–8

    Article  CAS  Google Scholar 

  56. Bhudhun A, Ramasami P, Murray JS, Politzer P (2013) J Mol Model 19:2739–2746

  57. Murray JS, Macaveiu L, Politzer P (2014) J Comput Sci 5:590–596

    Article  Google Scholar 

  58. Haynes WM (ed) (2011) CRC handbook of chemistry and physics, 91st edn. CRC, Boca Raton, pp 10-189 to 10-190

  59. Ramasami P, Ford TA (2010) J Mol Structure (Theochem) 940:50–55

    Article  CAS  Google Scholar 

  60. Ramasami P, Ford TA (2010) Can J Chem 88:716–724

    Article  CAS  Google Scholar 

  61. Ramasami P, Ford TA (2012) Comput Theoret Chem 990:227–235

    Article  CAS  Google Scholar 

  62. Ramasami P, Ford TA (2012) J Mol Struct 1023:163–169

    Article  CAS  Google Scholar 

  63. Kutzelnigg W (1984) Angew Chem Int Ed Engl 23:272–295

    Article  Google Scholar 

  64. Bader RFW (1990) Atoms in molecules — a quantum theory. Clarendon, Oxford

    Google Scholar 

  65. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is based on research supported in part by the National Research Foundation of South Africa (NRF) under Grant No. 2053648. The grantholder acknowledges that opinions, findings and conclusions or recommendations expressed in any publication generated by NRF-supported research are those of the authors and that the NRF accepts no liability in this regard. The authors also acknowledge the Universities of Mauritius and KwaZulu-Natal for financial assistance and the Centre for High Performance Computing (South Africa) for the use of computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Ford.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasami, P., Ford, T.A. Chalcogen-bonded complexes. Selenium-bound adducts of NH3, H2O, PH3, and H2S with OCSe, SCSe, and CSe2 . J Mol Model 21, 35 (2015). https://doi.org/10.1007/s00894-014-2562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2562-4

Keywords

Navigation