Skip to main content
Log in

Synthesis, characterization, and computational study of a new dimethoxy-chalcone

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Chalcones are an important class of medicinal compounds and are known for taking part in various biological activities as in anti-inflammatory, anti-leishmania, antimitotic, and antiviral. Chemically, chalcones consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. The wide action spectrum has attracted our attention to synthesize, crystallize, and characterize the dimethoxy-chalcone C18H18O3. Aiming to understand the process of crystal lattice stabilization, a combination of technique has been used including X-ray diffraction, infrared spectroscopy and computational molecular modeling. The theoretical calculations were carried out by the density functional method (DFT) with the M06-2X functional, with the 6-311+G(d,p) basis set. The vibrational wavenumbers were calculated and the scaled values were compared with experimental FT-IR spectrum. The intermolecular interactions were quantified and intercontacts in the crystal structure were analyzed using Hirshfeld surfaces. Bond distances and angles described by the X-ray diffraction and theoretical calculation are very similar. The C-H….O contacts contributing to assemble the supramolecular architecture are also responsible for the molecular structure assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rao YK, Fang SH, Tzeng YM (2009) Synthesis and biological evaluation of 3′,4′,5′-trimethoxychalcone analogues as inhibitors of nitric oxide production and tumor cell proliferation. Bioorg Med Chem 17(23):7909–7914

    Article  Google Scholar 

  2. Wu J et al. (2012) Synthesis and crystal structure of chalcones as well as on cytotoxicity and antibacterial properties. Med Chem Res 21(4):444–452

    Article  CAS  Google Scholar 

  3. Juvale K, Pape VFS, Wiese M (2012) Investigation of chalcones and benzochalcones as inhibitors of breast cancer resistance protein. Bioorg Med Chem 20:346–355

    Article  CAS  Google Scholar 

  4. Liu M, Wilairat P, Croft SL, Tand ALC, Goa ML (2003) Bioorg Med Chem 11:2729–2738

    Article  CAS  Google Scholar 

  5. Trivedi JC, Bariwal JB, Upadhyay KD, Naliapara YT, Joshi SK, Pannecouque CC, Clercqd ED, Shah AK (2007) Improved and rapid synthesis of new coumarinyl chalcona derivates and their antiviral activity. Tetrahedron Lett 48:8472–8474

    Article  CAS  Google Scholar 

  6. Bandgar BP, Gawande SS, Bodade RG, Totre JV, Khobragade CN (2010) Synthesis and biological evaluation of simple methoxylatedchalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg Med Chem 18:1364–1370

    Article  CAS  Google Scholar 

  7. Katsori AM, Hadjipavlou-Litina D (2011) Recent progress in therapeutic applications of chalcones. Exp Opin Ther Patents 21:1575–1596. doi:10.1517/13543776.2011.596529

    Article  CAS  Google Scholar 

  8. Edward HK, Li D (2008) Drug-like properties: concepts, structure design and methods. Elsevier, San Diego

  9. Basavoju S, Boström D, Velaga S (2008) Indomethacin–saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res 25(3):530–541

    Article  CAS  Google Scholar 

  10. Silverman RB (1992) The organic chemistry of drug design and drug action. Elsevier, San Diego

  11. Enraf-Nonius (1993) CAD-4 = PC 1.2 Enraf-Nonius. Delft, Netherlands

  12. Sheldrick GM (1990) SHELXS-97 Program for the solution of crystal structures. University of Gottingen, Germany

  13. Enraf-Nonius (2000) COLLECT Nonius BV. Delft, Netherlands

  14. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CWJ (ed) Methods in enzymology, vol 287. Academic, San Diego, pp 307–326

  15. Farrugia L (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32(4):837–838

    Article  CAS  Google Scholar 

  16. Farrugia L (1997) ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J Appl Crystallogr 30:565–1997

  17. Macrae CF et al (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39(3):453–457

    Article  CAS  Google Scholar 

  18. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. Cryst Eng Comm 4(66):378–392

    Article  CAS  Google Scholar 

  19. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr B 60(6):627–668

    Article  Google Scholar 

  20. Wolff SK et al (2007) Crystal Explorer 2.1. University of Western Australia, Perth, Australia

  21. Frisch MJ et al. (2004) Gaussian 03 Revision C02. Gaussian Inc, Wallingford, CT

  22. Frisch MJ et al (2009) Gaussian Inc. Wallingford, CT

  23. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  24. GaussView, Version 5, Dennington R, Keith T, Millam J (2009) Semichem Inc, Shawnee Mission

  25. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  26. Frisch MJ, Pople AJ, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  27. Politzer P, Murray JS (2002) Theor Chem Acc 108:134

    Article  CAS  Google Scholar 

  28. Scott AP, Radom L (1996) J Phys Chem 100:16503–16513

    Google Scholar 

  29. Russell D. Johnson III, (2013), NIST computational chemistry comparison and benchmark database. IOP Publishing web. http://cccbdb.nist.gov/vibscale2.asp?method=58&basis=1. Accessed 26 Mar 2014

  30. Silverstein M, Basseler GC, Morill C (1981) Spectrometric identification of organic compounds. Wiley, New York

    Google Scholar 

  31. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic, Boston

  32. Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci U S A 83:8440–8441

    Article  CAS  Google Scholar 

  33. Sklenar H, Jager J (1979) Molecular structure-biological activity relationships on the basis of quantum-chemical calculations. Int J Quantum Chem 26:467–484

    Article  Google Scholar 

  34. Zhow Z, Parr RG (1990) Activation hardness: New index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 112:5720–5724

    Article  Google Scholar 

  35. Fukui K (1982) Science 218:747–754

    Article  CAS  Google Scholar 

  36. Kosar B, Albayrak C (2011) Spectrochim Acta A 78:160–167

    Article  Google Scholar 

  37. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145

    Article  CAS  Google Scholar 

  38. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11(3):361–373

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the following Brazilian agencies for financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo Pesquisa do Estado de Goiás (FAPEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamilton B. Napolitano.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT2013)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ternavisk, R.R., Camargo, A.J., Machado, F.B.C. et al. Synthesis, characterization, and computational study of a new dimethoxy-chalcone. J Mol Model 20, 2526 (2014). https://doi.org/10.1007/s00894-014-2526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2526-8

Keywords

Navigation