Skip to main content
Log in

DFT study of the per-6-amino-β-cyclodextrin as catalyst in synthesis of 2-aryl-2,3-dihydro-4-quinolones

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The synthesis of 2-aryl-2,3-dihydro-4-quinolones in the presence of per-6-amino-β-cyclodextrin (per-6-ABCD) as catalyst can improve selectivity and yield. The interaction between per-6-ABCD and benzaldehyde or o-aminoacetophenone plays an important role in this reaction. This paper studies the complexes of per-6-ABCD with benzaldehyde and o-aminoacetophenone using density functional theory (DFT) method. The reaction process is investigated by studying the energy of the reactants and the product. Hydrogen bonds are researched on the basis of natural bonding orbital (NBO) analysis, the results propose the donor–acceptor interactions of complex. The Mulliken charge and frontier orbital are employed for revealing the charge distribution. In addition, 13C nuclear magnetic resonance (13CNMR) spectroscopy shows that the carbon atom on the aldehyde group for benzaldehyde, carbonyl group and the carbon atom connected with carbonyl group for o-aminoacetophenone are apparently activated in the cavity of per-6-ABCD. The probable catalytic mechanism of per-6-ABCD is discussed in terms of the calculated parameters.

Per-6-amino-β-cyclodextrin as catalyst in synthesis of 2-aryl-2,3-dihydro-4-quinolones

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233

    Article  CAS  Google Scholar 

  2. Hasegawa Y, Inoue Y, Deguchi K, Ohki S, Tansho M, Shimizu T, Yazawa K (2012) Molecular dynamics of a polyaniline/β-cyclodextrin complex investigated by 13C solid-state NMR. J Phys Chem B 116:1758–1764

    Article  CAS  Google Scholar 

  3. Li Z, Couzijn EPA, Zhang X (2012) Intrinsic properties of α-cyclodextrin complexes with benzoate derivatives in the gas phase: an experimental and theoretical study. J Phys Chem B 116:943–950

    Article  CAS  Google Scholar 

  4. Dsouza RN, Pischel U, Nau WM (2011) Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev 111:7941–7980

    Article  CAS  Google Scholar 

  5. López CA, de Vries AH, Marrink SJ (2013) Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci Rep-UK 3:2071

    Google Scholar 

  6. Nakamura A, Inoue Y (2005) Electrostatic manipulation of enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate within γ-cyclodextrin cavity through chemical modification. inverted product distribution and enhanced enantioselectivity. J Am Chem Soc 127:5338–5339

    Article  CAS  Google Scholar 

  7. Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Article  Google Scholar 

  8. Ji H, Huang L, Shen H, Zhou X (2011) β-Cyclodextrin-promoted synthesis of 2-phenylbenzimidazole in water using air as an oxidant. Chem Eng J 167:349–354

    Article  CAS  Google Scholar 

  9. Shin JA, Lim YG, Lee KH (2012) Copper-catalyzed azide − alkyne cycloaddition reaction in water using cyclodextrin as a phase transfer catalyst. J Org Chem 77:4117–4122

    Article  CAS  Google Scholar 

  10. Breslow R, Dong SD (1998) Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem Rev 98:1997–2011

    Article  CAS  Google Scholar 

  11. Bellia F, La Mendola D, Pedone C, Rizzarelli E, Saviano M, Vecchio G (2009) Selectively functionalized cyclodextrins and their metal complexes. Chem Soc Rev 38:2756–2781

    Article  CAS  Google Scholar 

  12. Marchetti L, Levine M (2011) Biomimetic catalysis. ACS Catal 1:1090–1118

    Article  CAS  Google Scholar 

  13. Liu Y, Han BH, Sun S-X, Wada T, Inoue Y (1999) Molecular recognition study on supramolecular systems. 20. Molecular recognition and enantioselectivity of aliphatic alcohols by L-tryptophan-modified β-cyclodextrin. J Org Chem 64:1487–1493

    Article  CAS  Google Scholar 

  14. Chan W-K, Yu W-Y, Che C-M, Wong M-K (2003) A cyclodextrin-modified ketoester for stereoselective epoxidation of alkenes. J Org Chem 68:6576–6582

    Article  CAS  Google Scholar 

  15. Kieser B, Fietzek C, Schmidt R, Belge G, Weimar U, Schurig V, Gauglitz G (2002) Use of a modified cyclodextrin host for the enantioselective detection of a halogenated diether as chiral guest via optical and electrical transducers. Anal Chem 74:3005–3012

    Article  CAS  Google Scholar 

  16. Jones CP, Anderson KW, Buchwald SL (2007) Sequential Cu-catalyzed amidation-base-mediated camps cyclization: a two-step synthesis of 2-aryl-4-quinolones from o-halophenones. J Org Chem 72:7968–7973

    Article  CAS  Google Scholar 

  17. Morales-Cid G, Fekete A, Simonet BM, Lehmann R, Cárdenas S, Zhang X, Valca´rcel M, Schmitt-Kopplin P (2010) In situ synthesis of magnetic multiwalled carbon nanotube composites for the clean-up of (fluoro) quinolones from human plasma prior to ultrahigh pressure liquid chromatography analysis. Anal Chem 82:2743–2752

    Article  CAS  Google Scholar 

  18. Tadd AC, Matsuno A, Fielding MR, Willis MC (2009) Cascade palladium-catalyzed alkenyl aminocarbonylation/ intramolecular aryl amidation: an annulative synthesis of 2-quinolones. Org Lett 11:583–586

    Article  CAS  Google Scholar 

  19. Lei B-L, Ding C-H, Yang X-F, Wan X-L, Hou X-L (2009) Kinetic resolution of 2,3-dihydro-2-substituted 4-quinolones by palladium-catalyzed asymmetric allylic alkylation. J Am Chem Soc 131:18250–18251

    Article  CAS  Google Scholar 

  20. Kanagaraj K, Pitchumani K (2013) Per-6-amino-β-cyclodextrin as a chiral base catalyst promoting one pot asymmetric synthesis of 2-aryl-2,3-dihydro-4-quinolones. J Org Chem 78:744–751

    Article  CAS  Google Scholar 

  21. Bensouilah N, Abdaoui M (2012) Inclusion complex of N-nitroso, N-(2-chloroethyl), N´, N´-dibenzylsulfamid with β-cyclodextrin: fluorescence and molecular modeling. CR Chim 15:1022–1036

    Article  CAS  Google Scholar 

  22. Arun KT, Jayaram DT, Avirah RR, Ramaiah D (2011) β-cyclodextrin as a photosensitizer carrier: effect on photophysical properties and chemical reactivity of squaraine dyes. J Phys Chem B 115:7122–7128

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB. Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 Revision B.05. Gaussian Inc, Pittsburgh, PA

  24. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104–15423

    Article  Google Scholar 

  25. Helgaker T, Wilson PJ, Amos RD, Handy NC (2000) Nuclear shielding constants by density functional theory with gauge including atomic orbitals. J Chem Phys 113:2983–2989

    Article  CAS  Google Scholar 

  26. Olah GA, Heiner T, Rasul G, Prakash GKS (1998) 1H, 13C, 15 N NMR and theoretical study of protonated carbamic acids and related compounds. J Org Chem 63:7993–7998

    Article  CAS  Google Scholar 

  27. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. Wires Coumpt Mol Sci 2:1–42

    Article  CAS  Google Scholar 

  28. Desiraju GR (1996) The C − H · · · O hydrogen bond: structural implications and supramolecular design. Accounts Chem Res 29:441–449

    Article  CAS  Google Scholar 

  29. Chocholoušová J, Špirko V, Hobza P (2004) First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H · · · O and improper blue-shifted C − H · · · O hydrogen bonds. Phys Chem Chem Phys 6:37–41

    Article  Google Scholar 

  30. Uccello-Barretta G, Balzano F, Sicoli G, Frı́glola C, Aldana I, Monge A, Paolino D, Guccione S (2004) Combining NMR and molecular modelling in a drug delivery context: investigation of the multi-mode inclusion of a new NPY-5 antagonist bromobenzenesulfonamide into β-cyclodextrin. Bioorg Med Chem 12:447–458

    Article  CAS  Google Scholar 

  31. Prabhu AAM, Sankaranarayanan RK, Venkatesh G, Rajendiran N (2012) Dual fluorescence of fast blue rr and fast violet B: effects of solvents and cyclodextrin complexation. J Phys Chem B 116:9061–9074

    Article  CAS  Google Scholar 

  32. Yan Z, Zuo Z, Lv X, Li Z, Li Z, Huang W (2012) Adsorption of NO on MoO3 (0 1 0) surface with different location of terminal oxygen vacancy defects: A density functional theory study. Appl Surf Sci 258:3163–3167

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the financial supports from the Scientific Research Fund of Hunan Provincial Education Department (No. 12A132) for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Wang, X. & Liu, N. DFT study of the per-6-amino-β-cyclodextrin as catalyst in synthesis of 2-aryl-2,3-dihydro-4-quinolones. J Mol Model 20, 2431 (2014). https://doi.org/10.1007/s00894-014-2431-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2431-1

Keywords

Navigation