Skip to main content
Log in

Effect of stepwise microhydration on the guanidinium···π interaction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The characteristics of the interaction of microhydrated guanidinium cation with the aromatic moieties present in the aromatic amino acids side chains have been studied by means of computational methods. The most stable minima found for non-hydrated complexes correspond in all cases to structures with guanidinium oriented toward the ring and interacting by means of N-H···π hydrogen bonds. The interaction becomes stronger when going from benzene (−14 kcal mol−1) to phenol (−17 kcal mol−1) to indole (−21 kcal mol−1). These complexes are held together mainly by electrostatics, but with important contributions from induction and dispersion. The presence of a small number of water molecules significantly affects the characteristics of the complexes. Hydrogen bonds formed by water with the cation, another water molecule, or the aromatic units become more and more similar in intensity as water molecules are included in the complex, leading to a great variety of minima with similar stability but showing very different structural patterns. The behavior is similar with the three aromatic units, the differences in stability mainly being a consequence of the different strength of the cation···π contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hobza P, Zaradnik R (1988) Intermolecular complexes: the role of van der Waals systems in physical chemistry and the biodisciplines. Elsevier, Amsterdam

    Google Scholar 

  2. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:4120. doi:10.1002/anie.200390574

    Article  Google Scholar 

  3. Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed Engl 50:4808–4842. doi:10.1002/anie.201007560

    Article  CAS  Google Scholar 

  4. Waters ML, Waters ML (2004) Aromatic interactions in peptides: impact on structure and function. Biopolymers (Pept Sci) 76:435–445. doi:10.1002/bip.20144

    Article  CAS  Google Scholar 

  5. Ma JC, Dougherty DA (1997) The cation−π interaction. Chem Rev 97:1303–1324. doi:10.1021/cr9603744

    Article  CAS  Google Scholar 

  6. Dougherty DA (2013) The cation-π interaction. Acc Chem Res 46:885–893. doi:10.1021/ar300265y

    Article  CAS  Google Scholar 

  7. Mahadevi AS, Sastry GN (2013) Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100–2138. doi:10.1021/cr300222d

    Article  CAS  Google Scholar 

  8. Dougherty DA (2007) Cation- π interactions involving aromatic. J Nutr 137:1504S–1508S

    CAS  Google Scholar 

  9. Carrazana-Garcia JA, Rodriguez-Otero J, Cabaleiro-Lago EM (2011) DFT Study of the interaction between alkaline cations and molecular bowls derived from fullerene. J Phys Chem B 115:2774–2782. doi:10.1021/jp109654e

    Article  CAS  Google Scholar 

  10. Soteras I, Orozco M, Luque FJ (2008) Induction effects in metal cation-benzene complexes. Phys Chem Chem Phys 10:2616–2624

    Article  CAS  Google Scholar 

  11. Gallivan JP, Dougherty DA (2000) A computational study of cation-π interactions vs salt bridges in aqueous media: Implications for protein engineering. J Am Chem Soc 122(5):870–874

    Article  CAS  Google Scholar 

  12. Anderson MA, Ogbay B, Arimoto R, Sha W, Kisselev OG, Cistola DP, Marshall GR (2006) Relative strength of cation-π vs salt-bridge interactions: The Gtα(340–350) Peptide/Rhodopsin System. J Am Chem Soc 128:7531–7541. doi:10.1021/ja058513z

    Article  CAS  Google Scholar 

  13. Hughes RM, Waters ML (2005) Influence of N-methylation on a cation- π interaction produces a remarkably stable β-hairpin peptide. J Am Chem Soc 127:6518–6519. doi:10.1021/ja0507259

    Article  CAS  Google Scholar 

  14. Hughes RM, Waters ML (2006) Arginine methylation in a β-hairpin peptide: implications for Arg-π interactions, ΔCp° and the cold denatured state. J Am Chem Soc 128:12735–12742. doi:10.1021/ja061656g

    Article  CAS  Google Scholar 

  15. Hughes RM, Waters ML (2006) Effects of lysine acetylation in a β-hairpin peptide: comparison of an amide-π and a cation-π interaction. J Am Chem Soc 128:13586–13591. doi:10.1021/ja0648460

    Article  CAS  Google Scholar 

  16. Hughes RM, Benshoff ML, Waters ML (2007) Effects of chain length and N-methylation on a cation- π interaction in a β-hairpin peptide. Chemistry 13:5753–5764. doi:10.1002/chem.200601753

    Article  CAS  Google Scholar 

  17. Berry BW, Elvekrog MM, Tommos C (2007) Environmental modulation of protein cation- π interactions. J Am Chem Soc 129:5308–5309. doi:10.1021/ja068957a

    Article  CAS  Google Scholar 

  18. Khandelia H, Kaznessis YN (2006) Cation−π interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: Molecular dynamics simulations. J Phys Chem B 111:242–250. doi:10.1021/jp064776j

    Article  CAS  Google Scholar 

  19. Shi Z, Olson CA, Kallenbach NR (2002) Cation−π interaction in model α-helical peptides. J Am Chem Soc 124:3284–3291. doi:10.1021/ja0174938

    Article  CAS  Google Scholar 

  20. Mason PE, Dempsey CE, Neilson GW, Kline SR, Brady JW (2009) Preferential interactions of guanidinum ions with aromatic groups over aliphatic groups. J Am Chem Soc 131:16689–16696. doi:10.1021/ja903478s

    Article  CAS  Google Scholar 

  21. Tatko CD, Waters ML (2003) The geometry and efficacy of cation – π interactions in a diagonal position of a designed β -hairpin. Protein Sci 12(11):2443–2452. doi:10.1110/ps.03284003

    Article  CAS  Google Scholar 

  22. Cabaleiro-Lago EM, Rodriguez-Otero J, Pena-Gallego A (2011) Effect of microhydration on the guanidinium···benzene interaction. J Chem Phys 135:214301

    Article  CAS  Google Scholar 

  23. Rodriguez-Sanz AA, Carrazana-Garcia J, Cabaleiro-Lago EM, Rodriguez-Otero J (2013) Effect of stepwise microhydration on the methylammonium···phenol and ammonium···phenol interaction. J Mol Model 19:1985–1994. doi:10.1007/s00894-012-1579-9

    Article  CAS  Google Scholar 

  24. Adamo C, Berthier G, Savinelli R (2004) Solvation effects on cation– π interactions: a test study involving the quaternary ammonium ion. Theor Chem Accounts Theory, Comput Model (Theor Chim Acta) 111:176–181. doi:10.1007/s00214-003-0507-6

    Article  CAS  Google Scholar 

  25. Xu Y, Shen J, Zhu W, Luo X, Chen K, Jiang H (2005) Influence of the water molecule on cation−π interaction: ab initio Second Order Møller−Plesset Perturbation Theory (MP2) calculations. J Phys Chem B 109:5945–5949. doi:10.1021/jp044568w

    Article  CAS  Google Scholar 

  26. Reddy AS, Zipse H, Sastry GN (2007) Cation−π interactions of bare and coordinatively saturated metal ions: contrasting structural and energetic characteristics. J Phys Chem B 111:11546–11553. doi:10.1021/jp075768l

    Article  CAS  Google Scholar 

  27. Campo-Cacharron A, Cabaleiro-Lago EM, Rodriguez-Otero J (2012) Effects of microhydration on the characteristics of cation-phenol complexes. Theor Chem Accounts 131:1–13. doi:10.1007/s00214-012-1290-z

    Article  CAS  Google Scholar 

  28. Vaden TD, Lisy JM (2004) Characterization of hydrated Na+(phenol) and K+(phenol) complexes using infrared spectroscopy. J Chem Phys 120:721–730. doi:10.1063/1.1630962

    Article  CAS  Google Scholar 

  29. Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241. doi:10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  30. Singh NJ, Min SK, Kim DY, Kim KS (2009) Comprehensive energy analysis for various types of π-interaction. J Chem Theory Comput 5:515–529. doi:10.1021/ct800471b

    Article  CAS  Google Scholar 

  31. Tsuzuki S, Uchimaru T (2006) Magnitude and physical origin of intermolecular interactions of aromatic molecules: recent progress of computational studies. Curr Org Chem 10:745–762

    Article  CAS  Google Scholar 

  32. Hohenstein EG, Sherrill CD (2012) Wavefunction methods for noncovalent interactions. Wiley Interdiscip Rev Comput Mol Sci 2:304–326. doi:10.1002/wcms.84

    Article  CAS  Google Scholar 

  33. Sherrill CD (2009) Computations of noncovalent π interactions. Rev Comput Chem 26:1–38

    CAS  Google Scholar 

  34. Grimme S (2003) Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J Chem Phys 118:9095. doi:10.1063/1.1569242

    Article  CAS  Google Scholar 

  35. Hill JG, Platts JA (2007) Spin-component scaling methods for weak and stacking interactions. J Chem Theory Comput 3:80–85. doi:10.1021/ct6002737

    Article  CAS  Google Scholar 

  36. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  37. Chałasiński G, Szczȩśniak MM (2000) State of the art and challenges of the ab initio theory of intermolecular interactions. Chem Rev 100:4227–4252. doi:10.1021/cr990048z

    Article  CAS  Google Scholar 

  38. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1887–1930. doi:10.1021/cr00031a008

    Article  CAS  Google Scholar 

  39. Sherrill CD (2013) Energy component analysis of π interactions. Acc Chem Res 46:1020–1028. doi:10.1021/ar3001124

    Article  CAS  Google Scholar 

  40. Misquitta AJ, Szalewicz K (2005) Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers. J Chem Phys 122:214109. doi:10.1063/1.1924593

    Article  CAS  Google Scholar 

  41. Hesselmann A, Jansen G, Schütz M (2005) Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. J Chem Phys 122:14103. doi:10.1063/1.1824898

    Article  CAS  Google Scholar 

  42. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Kö C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, O’Neill DP, Palmieri P, Peng D, Pitzer KP, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M (2009) Molpro version 2009.1, a package of ab initio programs. see http://www.molpro.net

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery, J. A. J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02

  44. Kim D, Hu S, Tarakeshwar P, Kim KS, Lisy JM (2003) Cation - π interactions: a theoretical investigation of the interaction of metallic and organic cations with alkenes, arenes, and heteroarenes. J Phys Chem A 1228–1238

Download references

Acknowledgments

The authors thank the financial support from the Ministerio de Ciencia e Innovación and the European Regional Development Fund (ERDF) 2007–2013 (Grant No. CTQ2009-12524). We are also thankful to the Centro de Supercomputación de Galicia (CESGA) for the use of their computers. A. A. R.-S. also thanks Spanish Ministerio Ciencia e Innovación for a Formación de Personal Investigador (FPI) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique M. Cabaleiro-Lago.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Sanz, A.A., Cabaleiro-Lago, E.M. & Rodríguez-Otero, J. Effect of stepwise microhydration on the guanidinium···π interaction. J Mol Model 20, 2209 (2014). https://doi.org/10.1007/s00894-014-2209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2209-5

Keywords

Navigation