Skip to main content
Log in

Experimental and theoretical assignment of the vibrational spectra of triazoles and benzotriazoles. Identification of IR marker bands and electric response properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The FTIR spectra of a series of 1H- and 2H- 1,2,3- and 1,2,4- triazoles and benzotriazoles were measured in the solid state. Assignments of the observed bands were facilitated by computation of the spectra using the density functional B3LYP method with the 6-311++G** basis set. The theoretical spectra show very good agreement with experiment. Rigorous normal coordinate analyses have been performed, and detailed vibrational assignment has been made on the basis of the calculated potential energy distributions. Several ambiguities and contradictions in the previously reported vibrational assignments have been clarified. “Marker bands” characterize the triazole ring were identified. The effect of substituents, the nature of the characteristic “marker bands” and quenching of intensities of some bands are discussed. Comparison of the topology of the charge density distribution, and the electric response properties of the 1H-, and 2H- isomers of both 1,2,3- and 1,2,4 triazole have been made using the quantum theory of atoms-in-molecules (QTAIM) by calculating the Laplacian of the electron density (∇2ρ(r)). Analysis of the contour plots and relief maps of ∇2ρ(r) reveals that 1,2,3- and 1,2,4-triazoles show completely different topological features for the distribution of the electron density. Thus, while the 1,2,3-isomer is a very polar molecule, the 1,2,4-isomer is much more polarizable. Bonding characteristics show also different features. This would thus underlie the different features of their vibrational spectra. The reported vibrational assignment can be used for further spectroscopic studies of new drugs and biological compounds containing the triazole ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wong MW, Leungtoung R, Wentrup C (1993) J Am Chem Soc 115:2465–2472

    Article  CAS  Google Scholar 

  2. Nelson DL, Cox MM (2004) Lehninger principles of biochemistry. Freeman, San Francisco

    Google Scholar 

  3. Brooks GT, Roberts T (1999) Pesticide chemistry and biosciences: the food-environment challenge. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  4. Davarski KA, Khalachev NK, Yankova RZ, Raikov S (1998) Chem Heterocycl Compd 34:568–574

    Article  CAS  Google Scholar 

  5. Kharb RM, Yar S, Sharma PC (2011) Curr Med Chem 18:3265–3297

    Article  CAS  Google Scholar 

  6. Balabin RM, Safieva RZ (2007) J Near Infrared Spectrosc 15:343–349

    Article  CAS  Google Scholar 

  7. Zhou CH, Wang Y (2012) Curr Med Chem 19:239–280

    Article  CAS  Google Scholar 

  8. Balabin RM, Syunyaev RZ (2008) J Colloid Interface Sci 318:167–174

    Article  CAS  Google Scholar 

  9. Katritzky AR, Rees CW (1984) Comprehensive heterocyclic chemistry. Pergamon, Oxford

    Google Scholar 

  10. Gilchrist TL, Gymer GE (1974) Adv Heterocycl Chem 16:33–85

    Article  CAS  Google Scholar 

  11. Santana L, Teijeira M, Uriarte E, Teran C, Andrei G, Snoeck R, Balzarini J, De CE (1999) Nucleosides Nucleotides 18:733–741

    Article  CAS  Google Scholar 

  12. Agarwal S, Pande A, Saxena VK, Chowdhury SR (1988) Pol J Pharmacol Pharm 40(3):313–319

    Google Scholar 

  13. Cooper K, Steele J, Richardson K. EP 329357. (Chem. Abstr. 1990, 112, 76957u)

  14. Oziminskia WP, Dobrowolskia JC, Mazurek AP (2003) J Mol Struct 697:651–653

    Google Scholar 

  15. Bugalho SCS, Macoas EMS, Cristiano MLS, Fausto R (2001) Phys Chem Chem Phys 3:3541–3547

    Article  CAS  Google Scholar 

  16. KonoPski L, Kielczewska A, Maslosz J (1996) Spectrosc Lett 29(1):143–149

    Article  CAS  Google Scholar 

  17. Hong W, Clemens B, Gaby P, Jakob W (2000) J Am Chem Soc 122(24):5849–5855

    Article  CAS  Google Scholar 

  18. Alan RK, Subbu P, Wei-Qiang F (1990) J Chem Soc Perkin Trans 2:2059–2062

    Google Scholar 

  19. Katritzky AR, Yannakopoulou K (1989) Heterocycles 28:1121–1134

    Article  CAS  Google Scholar 

  20. Abbé GL, Delbeke P, VanEssche G, Leuyten I, VerCanteren K, Toppet S (1990) Bull Soc Chim Belg 99:1007

    Article  Google Scholar 

  21. Faure R, Vincent EJ, Elguero J (1983) Heterocycles 20:1713–1716

    Article  CAS  Google Scholar 

  22. Alan RK, Malhotra N, Wei-Qiang F, Ernst A (1991) J Chem Soc Perkin Trans 2:1545–1547

    Google Scholar 

  23. Palmer MH, Kurshid MMP, Rayner TJ, Smith J (1994) Chem Phys 182:27–37

    Article  CAS  Google Scholar 

  24. Mo O, de Paz JLG, Yanez M (1981) J Phys Chem 90:5597–5604

    Article  Google Scholar 

  25. Palmer MH, Simpson I, Wheeler JR (1981) Z Naturforsch 36A:1246–1252

    CAS  Google Scholar 

  26. Bergtrup CJ, Nielsen L, Nygaard S, Samdal CE, Sjoergen GO, Soerensen (1988) Acta Chem Scand A 42:500–514

    Article  Google Scholar 

  27. Törnkvist C, Bergman J, Liedberg B (1991) J Phys Chem 95:3123–3128

    Article  Google Scholar 

  28. Sushko NI, Matveeva NA et al (1990) Zh Prikl Spektrosk 53:323–327

    CAS  Google Scholar 

  29. Billes F, Endrédi H, Keresztury G (2000) J Mol Struct (Theochem) 530:183–200

    Article  CAS  Google Scholar 

  30. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  31. Frisch MJ, Pople JA et al (2009) GAUSSIAN 09, revision a.6. Gaussian Inc, Pittsburgh

    Google Scholar 

  32. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  33. Burke K, Perdew JP, Wan Y, Dobson JF, Vignale G, Das MP (eds) (1998) Electronic density functional theory: recent progress and new directions. Plenum Press, New York

    Google Scholar 

  34. Perdew JP, Burke K, Wang Y (1996) Phys Rev B54:16533–16539

    Article  Google Scholar 

  35. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–655

    Article  CAS  Google Scholar 

  36. Clark T, Chandrasekhar J, Spitznagel GW, Schrelyer PVR (1983) J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  37. AIMAll (Version 13.05.06), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2013 (aim.tkgristmill.com)

  38. Kudchadker SA, Rao CNR (1973) Indian J Chem 11:140–142

    CAS  Google Scholar 

  39. Törnkvist C, Bergman J, Liedberg B (1991) J Phys Chem 95:3123–3128

    Article  Google Scholar 

  40. Choi U-S, Tae-W K, Seung-W J, Cheol-J K (1998) Bull Korean Chem Soc 19(3):299–307

    CAS  Google Scholar 

  41. Buckingham AD (1978) In: Pullman B (ed) Intermolecular interactions: from diatomic to biopolymers. Wiley, Chichester, p 1

    Google Scholar 

  42. Kielich S (1977) Molekularna optyka nieliniowa (nonlinear molecular optics). Naukowe, Warsaw

    Google Scholar 

  43. Hohm U (2000) Vacuum 58:117–134

    Article  CAS  Google Scholar 

  44. Schweitzer RC, Morris JB (2000) J Chem Inf Comput Sci 40:1253–1261

    Article  CAS  Google Scholar 

  45. Gad F, Xiaolin C, Robin L (1996) Chem Phys Lett 29:689–698

    Google Scholar 

  46. Wolfgang R, Christoph J, Arnim W, Michael S (1998) J Phys Chem A 102:3048–3059

    Article  Google Scholar 

Download references

Acknowledgment

This work  was funded by the Deanship of Scientific Research (DSR) King Abdulaziz University, Jeddah, under grant no.(503-130-1433). The authors acknowledge with thanks DSR support for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rifaat Hilal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1S

(DOC 36 kb)

Table 2S

(DOC 36 kb)

Table 3S

(DOC 45 kb)

Table 4S

(DOC 45 kb)

Figure 1S

(DOC 143 kb)

Figure 2S

(DOC 504 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aziz, S.G., Elroby, S.A., Alyoubi, A. et al. Experimental and theoretical assignment of the vibrational spectra of triazoles and benzotriazoles. Identification of IR marker bands and electric response properties. J Mol Model 20, 2078 (2014). https://doi.org/10.1007/s00894-014-2078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2078-y

Keywords

Navigation