Skip to main content
Log in

Structural analysis and molecular dynamics simulations of novel δ-endotoxin Cry1Id from Bacillus thuringiensis to pave the way for development of novel fusion proteins against insect pests of crops

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The theoretical three-dimensional structure of a novel δ-endotoxin Cry1Id (81 kDa) belonging to Cry1I class, toxic to many of the lepidopteran pests has been investigated through comparative modeling. Molecular dynamics (MD) simulations was carried out to characterize its structural and dynamical features at 10 ns in explicit solvent using the GROMACS version 4.5.4. Finally the simulated model was validated by the SAVES, WHAT IF, MetaMQAP, ProQ, ModFOLD and MolProbity servers. Despite low sequence identity with its structural homologs, Cry1Id not only resembles the previously reported Cry structures but also shares the common five conserved blocks of amino acid residues. Although the domain II of Cry1Id superpose well with its closest structural homolog Cry8Ea1, variation of amino acids and length in the apical loop2 of domain II was observed. In this work, we have hypothesized that the variations in apical loop2 might be the sole factor for providing variable surface accessibility to Cry1Id protein that could be important in receptor recognition. MD simulation showed the proposed endotoxin retains its stable conformation in aqueous solution. The result from this study is expected to aid in the development hybrid Cry proteins and new potent fusion proteins with novel specificities against different insect pests for improved pest management of crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aronson AL, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50:1–24

    CAS  Google Scholar 

  2. Schnepf E, Crickmore N, Van Rie J, Lereclus D (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol 62:775–806

    CAS  Google Scholar 

  3. Manimaran P, Ramkumar G, Mohan M, Mangrauthia SK, Padmakumari AP, Muthuraman P, Bentur JS, Viraktamath BC, Balachandran SM (2011) Bt rice evaluation and deployment strategies. GM Crops 2:135–137

    Article  CAS  Google Scholar 

  4. Huang DF, Zhang J, Song FP, Lang ZH (2007) Microbial control and biotechnology research on Bacillus thuringiensis in China. J Invertebr Pathol 95:175–180

    Article  Google Scholar 

  5. Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol Biol Rev 71:255–281

    Article  CAS  Google Scholar 

  6. Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    CAS  Google Scholar 

  7. Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochim Biophys Acta 924:507–518

    Article  Google Scholar 

  8. Choma CT, Surewicz WK, Carey PR, Pozsgay M, Raynor T, Kaplan H (1990) Unusual proteolysis of the protein and toxin from Bacillus thuringiensis structural implications. Eur J Biochem 189:523–527

    Article  CAS  Google Scholar 

  9. Hofmann C, Vanderbruggen H, Hofte H, Van Mellaert H (1988) Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midgets. Proc Natl Acad Sci USA 85:7844–7848

    Article  CAS  Google Scholar 

  10. de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Review Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433

    Article  Google Scholar 

  11. Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  Google Scholar 

  12. Gazit E, La Rocca P, Sansom MS, Shai Y (1998) The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an “umbrella-like” structure of the pore. Proc Natl Acad Sci USA 95:12289–12294

    Article  CAS  Google Scholar 

  13. Li JD, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A° resolution. Nature 353:815–821

    Article  CAS  Google Scholar 

  14. Schwartz JL, Lu YJ, Sohnlein P, Brousseau R, Laprade R, Masson L, Adang MJ (1997) Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors. FEBS Lett 412:270–276

    Article  CAS  Google Scholar 

  15. Boonserm P, Mo M, Angsuthanasombat C, Lescar J (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8 angstrom resolution. J Bacteriol 188:3391–3401

    Article  CAS  Google Scholar 

  16. Gomez I, Arenas I, Benitez I, Miranda-Ríos J, Becerril B, Grande R, Almagro JC, Bravo A, Soberon M (2006) Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. J Biol Chem 281:34032–34039

    Article  CAS  Google Scholar 

  17. Bravo A (1997) Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains. J Bacteriol 179:2793–801

    CAS  Google Scholar 

  18. de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  Google Scholar 

  19. Guo S, Ye S, Liu Y, Wei L, Xue J, Wu H, Song F, Zhang J, Wu X, Huang D, Rao Z (2009) Crystal structure of Bacillus thuringiensis Cry8Ea1: An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J Struct Biol 168:259–266

    Article  CAS  Google Scholar 

  20. Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  Google Scholar 

  21. Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R, Cygler M (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol 254:447–464

    Article  CAS  Google Scholar 

  22. Morse RJ, Yamamoto T, Stroud RM (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9:409–417

    Article  CAS  Google Scholar 

  23. Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft JR, Pangborn W, English L (2001) Structure of the insecticidal bacterial-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallographica Section D: Biological Crystallography 57:1101–1109

    Article  CAS  Google Scholar 

  24. Boonserm P, Davis P, Ellar DJ, Li J (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348:363–382

    Article  CAS  Google Scholar 

  25. Choi SK, Shin BS, Kong EM, Rho HM, Park SH (2000) Cloning of a new Bacillus thuringiensis cry1I-type crystal protein gene. Curr Microbiol 41:65–69

    Article  CAS  Google Scholar 

  26. Gleave AP, Williams R, Hedges RJ (1993) Screening by polymerase chain reaction of Bacillus thuringiensis serotypes for the presence of cryV-like insecticidal protein genes and characterization of a cryV gene cloned from B. thuringiensis subsp. kurstaki. Appl Environ Microbiol 59:1683–1687

    CAS  Google Scholar 

  27. Tabashnik BE, Finson N, Chilcutt CF, Cushing NL, Johnson MW (1993) Increasing efficiency of bioassays: evaluation of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 86:635–644

    Google Scholar 

  28. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  Google Scholar 

  29. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunesekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–222

    Article  CAS  Google Scholar 

  30. Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232

    Article  CAS  Google Scholar 

  31. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  CAS  Google Scholar 

  32. Wei Y, Thompson J, Floudas CA (2011) CONCORD: A consensus method for protein secondary structure prediction via Mixed Integer Linear Optimization. Proc R Soc A. doi:10.1098/rspa.2011.0514

    Google Scholar 

  33. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23:318–326

    Article  CAS  Google Scholar 

  34. Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 7:12

    Article  CAS  Google Scholar 

  35. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  36. Ginalski K, Elofsson A, Fischer D, Rychlewski L (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19:1015–8

    Article  CAS  Google Scholar 

  37. Wallner B, Larsson P, Elofsson A (2007) Pcons.net: protein structure prediction meta server. Nucleic Acids Res 35:W369–374

    Article  Google Scholar 

  38. Kurowski MA, Bujnicki JM (2003) GeneSilico protein structure prediction meta-server. Nucleic Acids Res 31:3305–3307

    Article  CAS  Google Scholar 

  39. Combet C, Jambon M, Deléage G, Geourjon C (2002) Geno3D: automatic comparative molecular modeling of protein. Bioinformatics 18:213–214

    Article  CAS  Google Scholar 

  40. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  Google Scholar 

  41. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  Google Scholar 

  42. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  43. Gouet P, Courcelle E, Stuart DI, Métoz F (1999) ESPript: multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  CAS  Google Scholar 

  44. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J Comp Chem 4:187–217

    Article  CAS  Google Scholar 

  45. Walter RPS, Philippe HH, Ilario GT, Alan EM, Salomon RB, Jens F, Andrew ET, Thomas H, Peter K, Wilfred FG (1999) The GROMOS biomolecular simulation program package. J Phys Chem 103:3596–3607

    Article  Google Scholar 

  46. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  47. Darden T, Perera L, Li L, Pedersen L (1999) New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 7:R55–R60

    Article  CAS  Google Scholar 

  48. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  49. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK-a program to check the stereochemical quality of protein structures. J App Cryst 26:283–291

    Article  CAS  Google Scholar 

  50. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of non-bonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  51. Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  CAS  Google Scholar 

  52. Pontius J, Richelle J, Wodak SJ (1996) Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 264:121–136

    Article  CAS  Google Scholar 

  53. Hekkelman ML, Te Beek TA, Pettifer SR, Thorne D, Attwood TK, Vriend G (2010) WIWS: a protein structure bioinformatics Web service collection. Nucleic Acids Res 38:W719–W723

    Article  CAS  Google Scholar 

  54. Melo F, Devos D, Depiereux E, Feytmans E (1997) ANOLEA: a www server to assess protein structures. Proc Int Conf Intell Syst Mol Biol 97:110–113

    Google Scholar 

  55. Pawlowski M, Gajda MJ, Matlak R, Bujnicki JM (2008) MetaMQAP: a meta-server for the quality assessment of protein models. BMC Bioinformatics 9:403

    Article  Google Scholar 

  56. Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073–1086

    Article  CAS  Google Scholar 

  57. McGuffin LJ, Buenavista MT, Roche DB (2013) The ModFOLD4 server for the quality assessment of 3D protein models. Nucleic Acids Res 41:W368–W372

    Article  Google Scholar 

  58. Chen VB 3rd, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  Google Scholar 

  59. Wiederstein S (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  60. Gelly JC, Joseph AP, Srinivasan N, de Brevern AG (2011) iPBA: a tool for protein structure comparison using sequence alignment strategies. Nucleic Acids Res 39:W18–W23

    Article  CAS  Google Scholar 

  61. Takeshi K (2003) MATRAS: a program for protein 3D structure comparison. Nucleic Acids Res 31:3367–3369

    Article  Google Scholar 

  62. Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–579

    Article  CAS  Google Scholar 

  63. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  64. Ikai AJ (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898

    CAS  Google Scholar 

  65. Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161

    Article  CAS  Google Scholar 

  66. Kroemer RT, Doughty SW, Robinson AJ, Richard WG (1996) Predictions of the three-dimensional structure of human interleukin-7 by homology modeling. Protein Eng 9:493–498

    Article  CAS  Google Scholar 

  67. Tajne S, Sanam R, Gundla R, Gandhi NS, Mancera RL, Boddupally D, Vudem DR, Khareedu VR (2012) Molecular modeling of Bt Cry1Ac (DI-DII)-ASAL (Allium sativum lectin)-fusion protein and its interaction with aminopeptidase N (APN) receptor of Manduca sexta. J Mol Graph Model 33:61–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the grant of Bioinformatics Initiative Division, Department of Electronics and Informatics Technology (DEITY), Ministry of Communications and Information Technology, Government of India. We also gratefully acknowledge the financial support by Biotechnology Information System Network (BTISNET), Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumita Barooah.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehury, B., Sahu, M., Sahu, J. et al. Structural analysis and molecular dynamics simulations of novel δ-endotoxin Cry1Id from Bacillus thuringiensis to pave the way for development of novel fusion proteins against insect pests of crops. J Mol Model 19, 5301–5316 (2013). https://doi.org/10.1007/s00894-013-2010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2010-x

Keywords

Navigation