Skip to main content
Log in

Microsolvation and hydration enthalpies of CaC2O4(H2O) n (n = 0-16) and C2O4 2-(H2O) n (n = 0-14): an ab initio study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

An Erratum to this article was published on 05 July 2016

Abstract

We studied hydrated calcium oxalate and its ions at the restricted Hartree–Fock RHF/6-31G* level of theory. Performing a configurational search seems to improve the fit of the HF/6-31G* level to experimental data. The first solvation shell of calcium oxalate contains 13 water molecules, while the first solvation shell of oxalate ion is formed by 14 water molecules. The first solvation shell of Ca(II) is formed by six water molecules, while the second shell contains five. At 298.15 K, we estimate the asymptotic limits (infinite dilution) of the total standard enthalpies of hydration for Ca(II), oxalate ion and calcium oxalate as −480.78, –302.78 and –312.73 kcal mol−1, resp. The dissociation of hydrated calcium oxalate is an endothermic process with an asymptotic limit of +470.84 kcal mol−1.

CaC2O4(H2O)16 and C2O4 2-(H2O)14

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hinton JF, Amis ES (1971) Solvation numbers of ions. Chem Rev 71:627–674

    Article  CAS  Google Scholar 

  2. Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93:1157–1204

    Article  CAS  Google Scholar 

  3. Babu CS, Lim C (1999) Theory of ionic hydration: insights from molecular dynamics simulations and experiment. J Phys Chem B 103:7958–7968

    Article  CAS  Google Scholar 

  4. Pal SK, Zewail AH (2004) Dynamics of water in biological recognition. Chem Rev 104:2099–2124

    Article  CAS  Google Scholar 

  5. Bagchi B (2005) Water dynamics in the hydration layer around proteins and micelles. Chem Rev 105:3197–3219

    Article  CAS  Google Scholar 

  6. Ball P (2007) Water as an active constituent in cell biology. Chem Rev 108:74–108

    Article  Google Scholar 

  7. Bakker HJ (2008) Structural dynamics of aqueous salt solutions. Chem Rev 108:1456–1473

    Article  CAS  Google Scholar 

  8. Wesson JA, Ward MD (2007) Pathological biomineralization of kidney stones. Elements 3:415–421

    Article  CAS  Google Scholar 

  9. Fulton JL, Heald SM, Badyal YS, Simonson JM JM (2003) Understanding the effects of concentration on the solvation structure of Ca2+ in Aqueous solution. I: the perspective on local structure from EXAFS and XANES. J Phys Chem A 107:4688–4696

    Article  CAS  Google Scholar 

  10. Zavitsas AA (2005) Aqueous solutions of calcium ions: hydration numbers and the effect of temperature. J Phys Chem B 109:20636–20640

    Article  CAS  Google Scholar 

  11. Bendich A, Zilberboim R (2008) Calcium: chemistry and biology. ACS Symp. Ser, USA

    Google Scholar 

  12. Frausto da Silva JJ, Williams RP (1991) The biological chemistry of the elements. Oxford University Press, Oxford

    Google Scholar 

  13. Clapham DE (1995) Calcium signaling. Cell 80:259–268

    Article  CAS  Google Scholar 

  14. Katz AK, Glusker JP, Beebe SA, Bock CW (1996) Calcium ion coordination: a comparison with that of beryllium, magnesium, and zinc. J Am Chem Soc 118:5752–5763

    Article  CAS  Google Scholar 

  15. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  Google Scholar 

  16. Piquemal JP, Perera L, Cisneros GA, Ren P, Pedersen LG, Darden TA (2006) Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: from energetics to structure. J Chem Phys 125:054511

    Article  Google Scholar 

  17. Rodriguez-Cruz SE, Jockusch RA, Williams ER (1999) Hydration energies and structures of alkaline earth metal ions, M2+(H2O)n, n = 5−7, M = Mg, Ca, Sr, and Ba. J Am Chem Soc 121:8898–8906

    Article  CAS  Google Scholar 

  18. Rais J, Okada T (2008) Quantized hydration energies of ions and structure of hydration shell from the experimental gas-phase data. J Phys Chem B 112:5393–5402

    Article  CAS  Google Scholar 

  19. Bakó I, Hutter J, Pálinkás G (2002) Car–Parrinello molecular dynamics simulation of the hydrated calcium ion. J Chem Phys 117:9838

    Article  Google Scholar 

  20. Todorova T, Hünenberger PH, Hutter J (2008) Car–Parrinello molecular dynamics simulations of CaCl2 Aqueous solutions. J Chem Theory Comp 4:779–789

    Article  CAS  Google Scholar 

  21. Jalilehvand F, Spångberg D, Lindqvist-Reis P, Hermansson K, Persson I, Sandström M (2001) Hydration of the calcium ion. An EXAFS, large-angle X-ray scattering, and molecular dynamics simulation study. J Am Chem Soc 123:431–441

    Article  CAS  Google Scholar 

  22. Tongraar A, Liedl KR, Rode BM (1997) Solvation of Ca2+ in water studied by Born–Oppenheimer Ab Initio QM/MM dynamics. J Phys Chem A 101:6299–6309

    Article  CAS  Google Scholar 

  23. Schwenk CF, Loeffler HH, Rode RM (2001) Molecular dynamics simulations of Ca2+ in Water: comparison of a classical simulation including three-body corrections and Born–Oppenheimer ab initio and density functional theory quantum mechanical/molecular mechanics simulations. J Chem Phys 115:10808

    Article  CAS  Google Scholar 

  24. Kerisit S, Parker SC (2004) Free energy of adsorption of water and metal ions on the 101 h4 Calcite surface. J Am Chem Soc 126:10152–10161

    Article  CAS  Google Scholar 

  25. Schwenk CF, Rode BM (2004) Ab initio QM/MM MD simulations of the hydrated Ca2+ Ion. Pure App Chem 76:37–47

    Article  CAS  Google Scholar 

  26. Larentzos JP, Criscenti LJ (2008) A Molecular dynamics study of alkaline earth metal–chloride complexation in aqueous solution. J Phys Chem B 112:14243–14250

    Article  CAS  Google Scholar 

  27. Li X, Tu Y, Tian H, Ågren H (2010) Computer simulations of aqua metal ions for accurate reproduction of hydration free energies and structures. J Chem Phys 132:104505

    Article  Google Scholar 

  28. Hamm LM, Wallace AF, Dove PM (2010) Molecular dynamics of ion hydration in the presence of small carboxylated molecules and implications for calcification. J Phys Chem B 114:10488–10495

    Article  CAS  Google Scholar 

  29. Megyes T, Grósz T, Radnai T, Bakó I, Pálinkás G (2004) Solvation of calcium ion in polar solvents: an X-ray diffraction and ab initio study. J Phys Chem A 108:7261–7271

    Article  CAS  Google Scholar 

  30. Peschke M, Blades AT, Kebarle P (2000) Binding energies for doubly-charged ions M2+ = Mg2+, Ca2+ and Zn2+ with the ligands L = H2O, acetone and N-methylacetamide in complexes M for n = 1 to 7 from gas phase equilibria determinations and theoretical calculations. J Am Chem Soc 122:10440–10449

    Article  CAS  Google Scholar 

  31. Bush MF, Saykally RJ, Williams ER (2007) Hydration of the calcium dication: direct evidence for second shell formation from infrared spectroscopy. ChemPhysChem 8:2245–2253

    Article  CAS  Google Scholar 

  32. Bush MF, Saykally RJ, Williams ER (2008) Infrared action spectra of Ca2+(H2O)11–69 exhibit spectral signatures for condensed-phase structures with increasing cluster size. J Am Chem Soc 130:15482–15489

    Article  CAS  Google Scholar 

  33. Lei XL, Pan BC (2010) Structures, stability, vibration entropy and IR spectra of hydrated calcium ion clusters [Ca(H2O)n]2+ (n = 1–20, 27): a systematic investigation by density functional theory. J Phys Chem A 114:7595–7603

    Article  CAS  Google Scholar 

  34. Tofteberg T, Öhrn A, Karlström G (2006) Combined quantum chemical statistical mechanical simulations of Mg2+, Ca2+ and Sr2+ in water. Chem Phys Lett 429:436–439

    Article  CAS  Google Scholar 

  35. Pavlov M, Siegbahn PEM, Sandstrom M (1998) Hydration of beryllium, magnesium, calcium, and zinc ions using density functional theory. J Phys Chem A 102:219–228

    Article  CAS  Google Scholar 

  36. Floris FM, Persico M, Tani A, Tomasi J (1994) Hydration shell structure of the calcium ion from simulations with ab initio effective pair potentials. Chem Phys Lett 227:126–132

    Article  CAS  Google Scholar 

  37. Probst MM, Radnai T, Heinzinger K, Bopp P, Rode BM (1985) Molecular dynamics and X-ray investigation of an aqueous calcium chloride solution. J Phys Chem 89:753–759

    Article  CAS  Google Scholar 

  38. Peschke M, Blades AT, Kebarle P (1998) Hydration energies and entropies for Mg2+, Ca2+, Sr2+, and Ba2+ from gas-phase ion–water molecule equilibria determinations. J Phys Chem A 102:9978–9985

    Article  CAS  Google Scholar 

  39. Wang XB, Yang X, Nicholas JB, Wang LS (2001) Bulk-like features in the photoemission spectra of hydrated doubly charged anion clusters. Science 294:1322–1325

    Article  CAS  Google Scholar 

  40. Wang XB, Yang X, Nicholas JB, Wang LS (2003) Photodetachment of hydrated oxalate dianions in the gas phase, C2O42 − (H2O)n (n = 3–40): from solvated clusters to nanodroplet. J Chem Phys 119:3631–3640

    Article  CAS  Google Scholar 

  41. Gao B, Liu ZF (2005) First principles study on the solvation and structure of C2O4 2−(H2O)n, n = 6 − 12. J Phys Chem A 109:9104–9111

    Article  CAS  Google Scholar 

  42. Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370

    Article  CAS  Google Scholar 

  43. Thanthiriwatte KS, Hohenstein EG, Burns LA, Sherrill CD (2011) Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. J Chem Theory Comput 7:88–96

    Article  CAS  Google Scholar 

  44. Ireta J, Neugebauer J, Scheffler M (2004) On the accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality. J Phys Chem A 108:5692–5698

    Article  CAS  Google Scholar 

  45. Hassinen T, Peräkylä M (2001) New energy terms for reduced protein models implemented in an off-lattice force field. J Comp Chem 22:1229–1242

    Article  CAS  Google Scholar 

  46. Stewart JJP (2008) MOPAC2009. Colorado springs, CO, USA: Stewart Computational Chemistry. http://OpenMOPAC.net

  47. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S et al (1993) General atomic and molecular electronic structure system. J Comp Chem 14:1347–1363

    Article  CAS  Google Scholar 

  48. ORCA (2012) An ab initio, density functional and semiempirical program package, Version 2.9. University of Bonn

  49. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comp Chem 30:2157–2164

    Article  Google Scholar 

  50. Jmol a 3D molecular visualizer (2012) http://www.jmol.org Accessed 26 Jan 2011

  51. Persistence of Vision Pty. Ltd. Persistence of Vision Raytracer (Version 3.6) http://www.povray.org

  52. GNU Image Manipulation Program v.2.6.7. Cropping and color-to-grayscale transformation of the ray-traced images used GIMP v.2.6.7. http://www.gimp.org. Accessed 26 Jan 2011

  53. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Mod 13:1173–1213

    Article  CAS  Google Scholar 

  54. Tanaka M, Aida M (2004) An ab initio mo study on orbital interaction and charge distribution in alkali metal aqueous solution: Li+, Na+, and K+. J Sol Chem 33:887–901

    Article  CAS  Google Scholar 

  55. Colonna-Cesari F, Sander C (1990) Excluded volume approximation to protein-solvent interaction. the solvent contact model. Biophys J 57:1103–1107

    Article  CAS  Google Scholar 

  56. Ohio Supercomputer Center, Calculate Thermodynamics Properties from Gaussian Output. http://www.osc.edu/supercomputing/gridchem/UsersManual/ch09s04.html. Accessed 2 Dec 2010

  57. Paniagua JC, Mota Valeri F (2010). Dipòsit Digital de la UB. (U. de Barcelona, Ed.) http://diposit.ub.edu/dspace/handle/2445/13382. Accessed 2 Dec 2010

  58. Woon DE, Dunning TH (1995) The pronounced effect of microsolvation on diatomic alkali halides: ab initio modeling of MX(H2O)n (M = Li, Na; X = F, Cl; n = 1-3). J Am Chem Soc 117:1090–1097

    Article  CAS  Google Scholar 

  59. Merrill GN, Webb SP, Bivin DB (2003) Formation of Alkali Metal/Alkaline earth cation water clusters, M(H2O)1−6, M = Li+, Na+, K+, Mg2+, and Ca2+: An Effective Fragment Potential (EFP) Case Study. J Phys Chem A 107:386–396

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge funding from Universidad Autónoma de Nuevo León through the Programa de Apoyo a la Investigación Científica y Tecnológica (PAICyT) program (grants #CN067-09 and #CA1731-07), and from Facultad de Ciencias Químicas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Rosas-García.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00894-016-3057-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosas-García, V.M., del Carmen Sáenz-Tavera, I., Rodríguez-Herrera, V.J. et al. Microsolvation and hydration enthalpies of CaC2O4(H2O) n (n = 0-16) and C2O4 2-(H2O) n (n = 0-14): an ab initio study. J Mol Model 19, 1459–1471 (2013). https://doi.org/10.1007/s00894-012-1707-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1707-6

Keywords

Navigation