Skip to main content
Log in

Electronic structure and decomposition reaction mechanism of cyclopropenone, phenylcylopropenone and their sulfur analogues: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The electronic structure, the origin of the extraordinary stability and the reaction mechanisms of the decomposition reaction of the three-membered ring cyclopropenone (IO), its phenyl derivative (IIO) and its sulfur analogues (IS and IIS) have been investigated at the B3LYP/6-311 + G** level of theory. All critical points on the reaction surface, reactants, transition states and intermediates were determined. Reaction rate constants and half-lives have been computed. Natural bond orbital (NBO) analysis has been used to investigate the type and extent of interaction in the studied species. Results indicate that the decomposition reaction occurs via a stepwise mechanism, with the formation of a short-lived intermediate. The characters of the intermediates for the decomposition of IIO and IIS are different. In case of IIO decomposition, the intermediate structure is of prevailing zwitterionic character, whereas that for the decomposition of IIS is of prevailing carbene character. Solvent effects are computed, analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11a,b
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Breslow R, Ryan G (1967) J Am Chem Soc 89:3073

    Article  CAS  Google Scholar 

  2. Breslow R, Ryan G, Groves JT (1970) J Am Chem Soc 92:988

    Article  CAS  Google Scholar 

  3. Breslow R, Oda M (1972) J Am Chem Soc 94:4787

    Article  CAS  Google Scholar 

  4. Benson RC, Flygare WH, Oda M, Breslow R (1973) J Am Chem Soc 2772, and references therein

  5. Oda M, Breslow R, Pecoraro J (1972) Tetrahedron Lett 4419

  6. Breslow R, Oda M, Pecoraro J (1972) Tetrahedron Lett 4415

  7. Yang J, McCann K, Laane J (2004) J Mol Struct 695–696:339–343

    Article  Google Scholar 

  8. Brown FR, Finseth DH, Miller FA, Rhee KH (1975) J Am Chem Soc 97:1011

    Article  CAS  Google Scholar 

  9. Tuazon EC, Finseth DH, Miller FA (1975) Spectrochim Acta 31A:1133

    CAS  Google Scholar 

  10. Benson RC, Flygare WH, Oda M, Breslow R (1973) J Am Chem Soc 95:2772

    Article  CAS  Google Scholar 

  11. Komatsu K, Kitagawa T (2003) Chem Rev 103:1371

    Article  CAS  Google Scholar 

  12. Poloukhtine A, Popik V (2003) J Org Chem 68:7833

    Article  CAS  Google Scholar 

  13. Breslow R, Eischer T, Krebs A, Peterson RA, Posner J (1965) J Am Chem Soc 87:1320

    Article  CAS  Google Scholar 

  14. Chiang Y, Kresge AJ, Popik V (1999) J Am Chem Soc 121:5930

    Article  CAS  Google Scholar 

  15. Chiang Y, Kresge AJ, Paine SW, Popik V (1996) J Phys Org Chem 9:361

    Article  CAS  Google Scholar 

  16. Wadsworth DH, Donatelliv BA (1981) Synthesis 285

  17. Nguyen LT, DeProft F, Nguyen MT, Geerlings P (2001) J Chem Soc PerkinTrans 2:898

    Google Scholar 

  18. Poloukhtine A, Popik V (2006) J Phys Chem A110:1749

    Article  Google Scholar 

  19. Eckart U, Sadlej AJ, Ingamells VE, Papadopoulos MG (2001) J Chem Phys 114

  20. Breslow R, Altman LJ, Krebs A, Mohacsi E, Murata I, Peterson RA, Posner J (1965) J Am Chem Soc 87:1326

    Article  CAS  Google Scholar 

  21. Dailey WP (1995) J Org Chem 60:6737

    Article  CAS  Google Scholar 

  22. Andraos J, Chiang Y, Grant AS, Guo H-X, Kresge AJ (1994) J Am Chem Soc 116:7411

    Article  CAS  Google Scholar 

  23. Chiang Y, Grant AS, Kresge AJ, Paine SW (1996) J Am Chem Soc 118:4366

    Article  CAS  Google Scholar 

  24. Chiang Y, Grant AS, Guo H-X, Kresge AJ, Paine SW (1997) J Org Chem 62:5363

    Article  CAS  Google Scholar 

  25. Chiang Y, Kresge AJ, Hochstrasser R, Wirz J (1989) J Am Chem Soc 111:2355

    Article  CAS  Google Scholar 

  26. Chiang Y, Kresge AJ, Popik VV (1995) J Am Chem Soc 117:9165

    Article  CAS  Google Scholar 

  27. Sung K, Fang D, Glenn D, Tidwell TT (1998) J Chem Soc Perkin Trans 2:2073

    Google Scholar 

  28. Frish MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG et al. (2008) Gaussian, Pittsburgh, PA

  29. Zhang Q, Li Z, Chen B (2009) J Mol Struct (THEOCHEM) 901:202

    Article  CAS  Google Scholar 

  30. Zhang Q, Chen B (2010) J Mol Struct (THEOCHEM) 941:10

    Article  CAS  Google Scholar 

  31. Smith DM, Nicolaides A, Golding BT, Radom L (1998) J Am Chem Soc 120:10223

    Article  CAS  Google Scholar 

  32. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  33. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  34. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  35. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  36. Lin L, Ding W-J, Fang W-H, Liu R-Z (2006) J Phys Chem A 110:8744–8749

    Article  CAS  Google Scholar 

  37. Rochart WV, Gard GL (1969) J Org Chem 34:4173–4176

    Article  Google Scholar 

  38. Ulic SE, Della Védova CO, Hermann A, Mack H-G, Oberhammer H (2008) J Phys Chem A 112:6211–6216

    Article  CAS  Google Scholar 

  39. Reed AE, Weinhold F (1983) J Phys Chem 78:4066–4073

    Article  CAS  Google Scholar 

  40. Chen XJ, Wu F, Yan M, Li HB, Tian SX, Shan X, Wang KD, Li ZJ, Xu KJ (2009) Chem Phys Lett 472(19):243–247

    Google Scholar 

  41. Frisch AE, Hratchian HP, Dennington RD II et al (2009) GaussView, Version 5.0.8. Gaussian, Wallingford

    Google Scholar 

  42. Elroby SAK, Osman OI, Aziz SG (2011) Mol Phys 109:1785–1795

    Article  CAS  Google Scholar 

  43. Steinfeld JI, Francisco JS, Hase WL (1989) Chemical kinetics and dynamics, 2nd edn. Prentice Hall, Upper Saddle River, pp 300–301

    Google Scholar 

Download references

Acknowledgments

This Project was funded by the Deanship of Scientific Research (DSR) King Abdulaziz University, Jeddah, under grant no. D19-130-/1432. The authors, therefore, acknowledge with thanks DSR support for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rifaat Hilal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elroby, S.A.K., Aziz, S.G. & Hilal, R. Electronic structure and decomposition reaction mechanism of cyclopropenone, phenylcylopropenone and their sulfur analogues: a theoretical study. J Mol Model 19, 1339–1353 (2013). https://doi.org/10.1007/s00894-012-1669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1669-8

Keywords

Navigation