Skip to main content
Log in

Comparison of the structural characteristics of Cu2+-bound and unbound α-syn12 peptide obtained in simulations using different force fields

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effects of Cu2+ binding and the utilization of different force fields when modeling the structural characteristics of α-syn12 peptide were investigated. To this end, we performed extensive temperature replica exchange molecular dynamics (T-REMD) simulations on Cu2+-bound and unbound α-syn12 peptide using the GROMOS 43A1, OPLS-AA, and AMBER03 force fields. Each replica was run for 300 ns. The structural characteristics of α-syn12 peptide were studied based on backbone dihedral angle distributions, free-energy surfaces obtained with different reaction coordinates, favored conformations, the formation of different Turn structures, and the solvent exposure of the hydrophobic residues. The findings show that AMBER03 prefers to sample helical structures for the unbound α-syn12 peptide and does not sample any β-hairpin structure for the Cu2+-bound α-syn12 peptide. In contrast, the central structure of the major conformational clusters for the Cu2+-bound and unbound α-syn12 peptide according to simulations performed using the GROMOS 43A1 and OPLS-AA force fields is a β-hairpin with Turn9-6. Cu2+ can also promote the formation of the β-hairpin and increase the solvent exposure of hydrophobic residues, which promotes the aggregation of α-syn12 peptide. This study can help us to understand the mechanisms through which Cu2+ participates in the fibrillation of α-syn12 peptide at the atomic level, which in turn represents a step towards elucidating the nosogenesis of Parkinson’s disease.

The representative structures of Cu2+-bound and unbound α-syn12 peptide using three different force fields

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2
Fig. 3a–f
Fig. 4
Fig. 5a–d
Fig. 6a–f
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bisaglia M, Mammi S, Bubacco L (2009) FASEB J 23:329–340

    Article  CAS  Google Scholar 

  2. Yoon J, Jang S, Lee K, Shin S (2009) J Biomol Struct Dyn 27:259–270

    Article  CAS  Google Scholar 

  3. Yoshiki Y, Masami M, Hiroaki S, Takashi N, Shinya H, Shin-ichi H, Koichi K, Masato H (2010) J Mol Biol 395:445–456

    Article  Google Scholar 

  4. Uversky VN, Li J, Fink AL (2001) J Biol Chem 276:44284–44296

    Article  CAS  Google Scholar 

  5. Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2005) Proc Natl Acad Sci USA 102:4294–4299

    Google Scholar 

  6. Paik SR, Shin HJ, Lee JH, Chang CS, Kim J (1999) Biochem J 340(Pt 3):821–828

    Article  CAS  Google Scholar 

  7. Bharathi, Rao KS (2007) Biochem Biophys Res Commun 359:115–120

    Article  CAS  Google Scholar 

  8. Sung YH, Rospigliosi C, Eliezer D (2006) Biochim Biophys Acta 1764:5–12

    Article  CAS  Google Scholar 

  9. Drew SC, Leong SL, Pham CL, Tew DJ, Masters CL, Miles LA, Cappai R, Barnham KJ (2008) J Am Chem Soc 130:7766–7773

    Article  Google Scholar 

  10. Jackson MS, Lee JC (2009) Inorg Chem 48:9303–9307

    Article  CAS  Google Scholar 

  11. Binolfi A, Rodriguez EE, Valensin D, D’Amelio N, Ippoliti E, Obal G, Duran R, Magistrato A, Pritsch O, Zweckstetter M, Valensin G, Carloni P, Quintanar L, Griesinger C, Fernandez CO (2010) Inorg Chem 49:10668–10679

    Article  CAS  Google Scholar 

  12. Valensin D, Camponeschi F, Luczkowski M, Baratto MC, Remelli M, Valensin G, Kozlowski H (2011) Metallomics 3:292–302

    Article  CAS  Google Scholar 

  13. Lee JC, Gray HB, Winkler JR (2008) J Am Chem Soc 130:6898–6899

    Article  Google Scholar 

  14. Binolfi A, Lamberto GR, Duran R, Quintanar L, Bertoncini CW, Souza JM, Cervenansky C, Zweckstetter M, Griesinger C, Fernandez CO (2008) J Am Chem Soc 130:11801–11812

    Article  CAS  Google Scholar 

  15. Ahmad A, Burns CS, Fink AL, Uversky VN (2012) J Biomol Struct Dyn 29:825–842

    Article  CAS  Google Scholar 

  16. Dudzik CG, Walter ED, Millhauser GL (2011) Biochemistry 50:1771–1777

    Article  CAS  Google Scholar 

  17. Riihimaki ES, Martinez JM, Kloo L (2007) J Phys Chem B 111:10529–10537

    Article  Google Scholar 

  18. Miller Y, Ma B, Nussinov R (2010) Proc Natl Acad Sci USA 107:9490–9495

    Google Scholar 

  19. Rose F, Hodak M, Bernholc J (2011) Sci Rep 1:11

    Article  Google Scholar 

  20. Matthes D, de Groot BL (2009) Biophys J 97:599–608

    Article  CAS  Google Scholar 

  21. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  22. Best RB, Buchete NV, Hummer G (2008) Biophys J 95:L07–09

    Article  CAS  Google Scholar 

  23. MacKerell AD Jr, Feig M, Brooks CL 3rd (2004) J Am Chem Soc 126:698–699

    Article  CAS  Google Scholar 

  24. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  25. Todorova N, Legge FS, Treutlein H, Yarovsky I (2008) J Phys Chem B 112:11137–11146

    Article  CAS  Google Scholar 

  26. Piana S, Lindorff-Larsen K, Shaw DE (2011) Biophys J 100:L47–49

    Article  CAS  Google Scholar 

  27. Petra K, Alfonso DS, Michal O, Robert B (2012) Biophys J 102:1897–1906

    Article  Google Scholar 

  28. Nguyen PH, Li MS, Derreumaux P (2011) Phys Chem Chem Phys 13:9778–9788

    Article  CAS  Google Scholar 

  29. Cao Z, Wang J (2010) J Biomol Struct Dyn 27:651–661

    Article  CAS  Google Scholar 

  30. Cao Z, Liu L, Wang J (2011) J Biomol Struct Dyn 29:527–539

    Article  CAS  Google Scholar 

  31. Cao Z, Liu L, Zhao L, Wang J (2011) Int J Mol Sci 12:8259–8274

    Article  CAS  Google Scholar 

  32. Hess B (2008) J Chem Theory Comput 4:116–122

    Article  CAS  Google Scholar 

  33. van der Spoel D, van Drunen R, Berendsen HJC (1994) GRoningen MAchine for Chemical Simulations. BIOSON Research Institute, Groningen

  34. van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zürich, Zürich

  35. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

  36. Jorgensen WL, Chandrasekhar J, Madura JD, Impy RW, Klein ML (1983) J Chem Phys 79:926–935

    Google Scholar 

  37. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  38. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  39. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101

    Article  Google Scholar 

  40. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  41. Sugita Y, Okamoto Y (1999) Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  42. Patriksson A, van der Spoel D (2008) Phys Chem Chem Phys 10:2073–2077

    Article  CAS  Google Scholar 

  43. Cao Z, Liu L, Wu P, Wang J (2011) Acta Biochim Biophys Sinica 43:172–180

    Article  CAS  Google Scholar 

  44. Hu H, Elstner M, Hermans J (2003) Proteins 50:451–463

    Article  CAS  Google Scholar 

  45. Best RB, Mittal J (2010) J Phys Chem B 114:8790–8798

    Article  CAS  Google Scholar 

  46. Heinig M, Frishman D (2004) Nucleic Acids Res 32:W500–502

    Article  CAS  Google Scholar 

  47. Garcia AE (1992) Phys Rev Lett 68:2696–2699

    Article  CAS  Google Scholar 

  48. Dobson CM (2003) Nature 426:884–890

    Article  CAS  Google Scholar 

  49. Takao Y, Yuji S, Yuko O (2004) Chem Phys Lett 386:460–467

    Article  Google Scholar 

  50. Rueda M, Ferrer-Costa C, Meyer T, Perez A, Camps J, Hospital A, Gelpi JL, Orozco M (2007) Proc Natl Acad Sci USA 104:796–801

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. H.J.C. Berendsen (University of Groningen) for providing us with the GROMACS programs.

This work was supported by grants 31000324, 61271378 and 30970561 from the National Natural Science Foundation of China and grants 2009ZRA14027 and 2009ZRA14028 from the Shandong Province Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1a–b

Initial structures of a the unbound and b the Cu2+-bound α-syn12 peptide. (DOC 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Z., Liu, L., Zhao, L. et al. Comparison of the structural characteristics of Cu2+-bound and unbound α-syn12 peptide obtained in simulations using different force fields. J Mol Model 19, 1237–1250 (2013). https://doi.org/10.1007/s00894-012-1664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1664-0

Keywords

Navigation