Skip to main content
Log in

Can cyclic HIV protease inhibitors bind in a non-preferred form? An ab initio, DFT and MM-PB(GB)SA study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

X-ray crystallography studies have identified that most cyclic inhibitors of HIV protease (including cyclic ureas) bind in a symmetric manner, however some cyclic inhibitors, such as cyclic sulfamides, bind in a non-symmetric manner. This raises the question as to whether it is possible for cyclic sulfamides to bind symmetrically and conversely for cyclic ureas to bind non-symmetrically. Herein we report an analysis of the conformational preference of cyclic ureas and sulfamides both free in solution and bound to HIV protease, including an investigation of the effect of branching. Quantum chemical calculations (B3LYP, M06-2X, MP2, CCSD(T)) predict the cyclic urea to prefer a symmetric conformation in solution, with a large activation barrier towards inter-conversion to the non-symmetric conformation. This differs from the cyclic sulfamides, which marginally prefer a non-symmetric conformation with a much smaller barrier to inter-conversion making it more likely for a non-preferred conformation to be observed. It is predicted that the cyclic scaffold itself favours a symmetric form, while branching induces a preference for a non-symmetric form. MD simulations on the free inhibitors identified inter-conversion with the cyclic sulfamides but not the cyclic ureas, in support of the quantum chemical results. MM-PB(GB)SA calculations on the cyclic inhibitors bound to HIV protease corroborate the X-ray crystallography studies, identifying the cyclic ureas to bind symmetrically and the cyclic sulfamides in a non-symmetrical manner. While the non-preferred form of the sulfamide may well be present as a free molecule in solution, our results suggest that it is unlikely to bind to HIV protease in a symmetric manner.

Two classes of cyclic inhibitors of HIV protease have been investigated for conformational preferences, including whether these inhibitors may bind in a non-preferred conformation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lam PYS, Ru Y et al (1996) Cyclic HIV protease inhibitors: synthesis, conformational analysis, P2/P2′ structure-activity relationship, and molecular recognition of cyclic ureas. J Med Chem 39:3514–3525

    Google Scholar 

  2. Cram DJ (1986) Preorganization—from solvents to spherands. Angew Chem Int Ed 25:1039–1057

    Google Scholar 

  3. Cram DJ (1988) The design of molecular hosts, guests and their complexes. Science 240:760–767

    Google Scholar 

  4. Jadhav PK, Woerner FJ et al (1998) Nonpeptide cyclic cyanoguanidines as HIV-1 protease inhibitors: synthesis, structure-activity relationships, and x-ray crystal structure studies. J Med Chem 41:1446–1455

    Article  CAS  Google Scholar 

  5. Abbenante G, March DR, Bergman DA, Hunt PA, Garnham B, Dancer RJ, Martin JL, Fairlie DP (1995) Regioselective structural and functional mimicry of peptides. Design of hydrolytically-stable cyclic peptidomimetic inhibitors of HIV- 1 protease. J Am Chem Soc 117:10220–10226

    Article  CAS  Google Scholar 

  6. Zhao C, Sham HL et al (2005) Synthesis and activity of N-acyl azacyclic urea HIV-1 protease inhibitors with high potency against multiple drug resistant viral strains. Bioorg Med Chem Lett 15:5499–5503

    Article  CAS  Google Scholar 

  7. Lam PYS, Jadhav PK et al (1994) Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 263:380–384

    Article  CAS  Google Scholar 

  8. Ala PJ, DeLoskey RJ et al (1998) Molecular recognition of cyclic urea HIV-1 protease inhibitors. J Biol Chem 273(20):12325–12331

    Article  CAS  Google Scholar 

  9. Ala PJ, Huston EE, Klabe RM, Jadhav PK, Lam PYS, Chang C-H (1998) Counteracting HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with XV638 and SD146, cyclic urea amides with broad specificities. Biochemistry 37:15042–15049

    Article  CAS  Google Scholar 

  10. Ala PJ, Huston EE et al (1997) Molecular basis of HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with cyclic urea inhibitors. Biochemistry 36:1573–1580

    Article  CAS  Google Scholar 

  11. Jadhav PK, Ala PJ, Woerner FJ, Chang C-H, Garber SS, Anton ED, Bacheler LT (1997) Cyclic urea amides: HIV-1 protease inhibitors with low nanomolar potency against both wild type and protease inhibitor resistant mutants of HIV. J Med Chem 40:181–191

    Article  CAS  Google Scholar 

  12. Ishima R, Gong Q, Tie Y, Weber IT, Louis JM (2010) Highly conserved glycine 86 and arginine 87 residues contribute differently to the structure and activity of the mature HIV-1 protease. Proteins 78:1015–1025

    Article  CAS  Google Scholar 

  13. Brik A, Wong C-H (2003) HIV-1 protease: mechanism and drug discovery. Org Biomol Chem 1:5–14

    Article  CAS  Google Scholar 

  14. Hosur MV, Bhat TN et al (1994) Influence of stereochemistry on activity and binding modes for C2 symmetry-based diol inhibitors of HIV-1 protease. J Am Chem Soc 116(3):847–855. doi:10.1021/ja00082a004

    Article  CAS  Google Scholar 

  15. Backbro K, Lowgren S et al (1997) Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor. J Med Chem 40:898–902

    Article  CAS  Google Scholar 

  16. Erickson J (1993) Design and structure of symmetry-based inhibitors of HIV-1 protease. Perspect Drug Discov Des 1(1):109–128. doi:10.1007/bf02171658

    Article  CAS  Google Scholar 

  17. Hulten J, Andersson HO et al (1999) Inhibitors of the c2-symmetric HIV-1 protease: nonsymmetric binding of a symmetric cyclic sulfamide with ketoxime groups in the P2/P2′ side chains. J Med Chem 42:4054–4061

    Article  CAS  Google Scholar 

  18. Schaal W, Karlsson A et al (2001) Synthesis and comparative molecular field analysis (CoMFA) of symmetric and nonsymmetric cyclic sulfamide HIV-1 protease inhibitors. J Med Chem 44:155–169

    Article  CAS  Google Scholar 

  19. Clark T (2011) Predictive modeling of molecular properties: can we go beyond interpretation? In: Comba P (ed) Modeling of molecular properties. Wiley-VCH , Heidelberg, pp 91–106. doi:10.1002/9783527636402.ch7

    Chapter  Google Scholar 

  20. Schrodinger L (2007) New York, NY Maestro, version 8

  21. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  23. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  24. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  25. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28(3):213–222. doi:10.1007/bf00533485

    Article  CAS  Google Scholar 

  26. Dunning TH Jr (1971) Gaussian basis functions for use in molecular calculations. III. Contraction of (10s6p) atomic basis sets for the first-row atoms. J Chem Phys 55(2):716–723

    Article  CAS  Google Scholar 

  27. Schutz CN, Warshel A (2001) What are the dielectric “Constants” of proteins and how to validate electrostatic models? Proteins 44:400–417

    Article  CAS  Google Scholar 

  28. Pomelli C, Tomasi J, Barone V (2001) An improved iterative solution to solve the electrostatic problem in the polarizable continuum model. Theor Chim Acta 105:446–451

    Article  CAS  Google Scholar 

  29. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  30. Tomasi J, Mennucci B, Cances E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct (THEOCHEM) 464:211–226

    Article  CAS  Google Scholar 

  31. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17(1):49–56. doi:10.1002/(sici)1096-987x(19960115)17:1<49::aid-jcc5>3.0.co;2-0

    Article  CAS  Google Scholar 

  32. Gerenkamp M, Grimme S (2004) Spin-component scaled second-order Møller–Plesset perturbation theory for the calculation of molecular geometries and harmonic vibrational frequencies. Chem Phys Letts 392:229–235

    Article  CAS  Google Scholar 

  33. Jung Y, Lochan RC, Dutoi AD, Head-Gordon M (2004) Scaled opposite-spin second order Møller–Plesset correlation energy: an economical electronic structure method. J Chem Phys 121:9793–9802

    Article  CAS  Google Scholar 

  34. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104–154119

    Article  Google Scholar 

  35. Schmidt MW, Baldridge KK et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  36. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654

    Article  Google Scholar 

  37. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods. 25. Supplementary functions for gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  38. Schaefer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  CAS  Google Scholar 

  39. Schaefer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  CAS  Google Scholar 

  40. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW et al. (2009) Gaussian 09, revision A.1. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  42. Frisch MJ, Trucks GW et al (2003) Gaussian 03. Gaussian, Inc., Wallingford CT

    Google Scholar 

  43. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145

    Article  CAS  Google Scholar 

  44. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  45. Case DA, Darden TA et al (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  46. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  47. Duan Y, Wu C et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  48. Lepsik M, Kriz Z, Havlas Z (2004) Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Proteins 57:279–293

    Article  CAS  Google Scholar 

  49. Wittayanarakul K, Aruksakunwong O, Saen-oon S, Chantratita W, Parasuk V, Sompornpisut P, Hannongbua S (2005) Insights into saquinavir resistance in the G48V HIV-1 protease: quantum calculations and molecular dynamic simulations. Biophys J 88:867–879

    Article  CAS  Google Scholar 

  50. Wittayanarakul K, Aruksakunwong O, Sompornpisut P, Sanghiran-Lee V, Parasuk V, Pinitglang S, Hannongbua S (2005) Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations. J Chem Inf Model 45:300–308

    Article  CAS  Google Scholar 

  51. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  52. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N.log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  53. Loncharich RJ, Brooks BR, Pastor RW (1992) Langevin dynamics of peptides: the frictional dependence of isomerization rates on N-Acetylalanyl-N’-Methylamide. Biopolymers 32:523–535

    Article  CAS  Google Scholar 

  54. Cerutti DS, Duke R, Freddolino PL, Fan H, Lybrand TP (2008) A vulnerability in popular molecular dynamics packages concerning langevin and andersen dynamics. J Chem Theory Comput 4(10):1669–1680

    Article  CAS  Google Scholar 

  55. Kollman PA, Massova I et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  56. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc 120(37):9401–9409

    Article  CAS  Google Scholar 

  57. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J Comput Chem 23:128–137

    Article  CAS  Google Scholar 

  58. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988

    Article  CAS  Google Scholar 

  59. Onufriev A, Bashford D, Case DA (2000) Modification of the generalized born model suitable for macromolecules. J Phys Chem B 104:3712–3720

    Article  CAS  Google Scholar 

  60. Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov Des 18:113–135

    Article  CAS  Google Scholar 

  61. Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem 25:238–250

    Article  CAS  Google Scholar 

  62. Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of Efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  63. Wang W, Lim WA, Jakalian A, Wang J, Wang JM, Luo R, Bayly CI, Kollman PA (2001) An analysis of the interactions between the Sem-5 SH3 domain and its ligands using molecular dynamics, free energy calculations, and sequence analysis. J Am Chem Soc 123:3986–3994

    Article  CAS  Google Scholar 

  64. Chang C-E, Trylska J, Tozzini V, McCammon JA (2007) Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations. Chem Biol Drug Des 69:39946

    Article  Google Scholar 

  65. Oehme DP, Brownlee RTC, Wilson DJD (2012) Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease. J Comput Chem. doi:10.1002/jcc.23095

Download references

Acknowledgments

D.O. was supported by an Australian Postgraduate Award (APA) scholarship. The authors acknowledge support from the National Computational Infrastructure National Facility (NCI-NF), Victorian Partnership for Advanced Computing (VPAC), Victorian Life Science Computing Initiative (VLSCI) and the high-performance computing facility of La Trobe University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. D. Wilson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oehme, D.P., Brownlee, R.T.C. & Wilson, D.J.D. Can cyclic HIV protease inhibitors bind in a non-preferred form? An ab initio, DFT and MM-PB(GB)SA study. J Mol Model 19, 1125–1142 (2013). https://doi.org/10.1007/s00894-012-1660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1660-4

Keywords

Navigation