Skip to main content
Log in

Anion recognition by azophenol thiourea-based chromogenic sensors: a combined DFT and molecular dynamics investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The relative binding affinities of several anions towards 2-nitroazophenol thiourea-based receptors were studied using density functional theory (DFT) in the gas phase and in chloroform solvent via PCM calculations. Both receptors have five distinctive NH and OH hydrogen donor atoms. All receptor–anion complexes are characterized by five intermolecular hydrogen bonds. The binding free energies are strongly influenced by a dielectric medium, and the solvation effect alters the trend of anion binding to the receptor. The calculated order of anion binding affinity for the receptor in chloroform, H2PO 4 > AcO > F > Cl > HSO 4 > NO 3 , is in excellent accord with experimental findings. The overall order of binding affinity is attributed to the basicity of the anion, the effect of solvation, and the number of proton acceptors available. Calculations of the NMR and UV-vis spectra strongly support the experimental characterization of the receptor–anion complexes. Explicit solvent molecular dynamics simulations of selected receptor–anion complexes were also carried out. Analysis of the structural descriptors revealed that the anions were strongly bound within the binding pocket via hydrogen-bonding interactions to the five receptor protons throughout the simulation.

Chromogenic anion sensing of azophenol thiourea-based receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1a–b
Fig. 2
Fig. 3a–b
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sessler JL, Gale PA, Cho WS (2006) Anion receptor chemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Gunnlaugsson T, Glynn M, Tocci GM, Kruger PE, Pfeffer FM (2006) Coord Chem Rev 250:3094–3117

    Article  CAS  Google Scholar 

  3. Gale PA, Quesada R (2006) Coord Chem Rev 250:3219–3244

    Article  CAS  Google Scholar 

  4. Wong MW, Ghosh T, Maiya BG (2004) J Phys Chem A 108:11249–11259

    Article  Google Scholar 

  5. Lee SJ, Jung JH, Seo J, Yoon I, Park KM, Lindoy LF, Lee SS (2006) Org Lett 8:1641–1643

    Article  CAS  Google Scholar 

  6. Singh NJ, Jun EJ, Chellappan K, Thangadurai D, Chandran RP, Hwang IC, Yoon J, Kim KS (2007) Org Lett 9:485–488

    Article  CAS  Google Scholar 

  7. Lu QS, Dong L, Zhang J, Li J, Jiang L, Huang Y, Qin S, Hu CW, Yu XQ (2009) Org Lett 11:669–672

    Article  CAS  Google Scholar 

  8. Li AF, Wang JH, Wang F, Jiang YB (2010) Chem Soc Rev 39:3729–3745

    Article  CAS  Google Scholar 

  9. Kato R, Nishizawa S, Hayashita T, Teramae N (2001) Tetrahedron Lett 42:5053–5056

    Article  CAS  Google Scholar 

  10. Lee DH, Lee KH, Hong JI (2001) Org Lett 3:5–8

    Article  CAS  Google Scholar 

  11. Lee DH, Lee HY, Lee KH, Hong JI (2001) Chem Commun 1188–1189

  12. Lee DH, Im JH, Son SU, Chung YK, Hong JI (2003) J Am Chem Soc 125:7752–7753

    Article  CAS  Google Scholar 

  13. Chen YJ, Chung WS (2009) Eur J Org Chem 4770–4776

  14. Ruangpornvisuti VJ (2004) Mol Struct Theochem 686:47–55

    Article  CAS  Google Scholar 

  15. Mondal CK, Lee JY (2006) J Theor Comput Chem 5:857–869

    Article  CAS  Google Scholar 

  16. Jose DA, Singh A, Das A, Ganguly B (2007) Tetrahedron Lett 48:3695–3698

    Article  CAS  Google Scholar 

  17. Rakrai W, Morakot N, Keawwangchai S, Kaewtong C, Wanno B, Ruangpornvisuti V (2011) Struct Chem 22:839–847

    Article  CAS  Google Scholar 

  18. Xie H, Wong MW (2012) Aust J Chem 65:303–313

    Article  CAS  Google Scholar 

  19. Becke DA (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  21. Wong MW (1996) Chem Phys Lett 256:391–399

    Article  CAS  Google Scholar 

  22. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  23. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Google Scholar 

  24. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  25. Messerschmidt M, Wagner A, Wong MW, Luger P (2002) J Am Chem Soc 124:732–733

    Article  CAS  Google Scholar 

  26. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  27. Cheeseman JR, Trucks GW, Keith T, Frisch MJ (1996) J Phys Chem 104:5497–5509

    Article  CAS  Google Scholar 

  28. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  29. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  30. Jacquemin D, Adamo C (2012) Int J Quantum Chem 112:2135–2141

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc., Wallingford

  32. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  33. Pearlman DA, Case DA, Caldwell JW, Ross WR, Cheatham TE III, DeBolt S, Ferguson D, Seibel G, Kollman PA (1995) Comp Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  34. Cieplak P, Caldwell JW, Kollman PA (2001) J Comput Chem 22:1048–1057

    Article  CAS  Google Scholar 

  35. Wavefunction Inc. (2010) SPARTAN 10. Wavefunction Inc., Irvine

  36. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  37. Desiraju GR (1991) Acc Chem Res 24:290–296

    Article  CAS  Google Scholar 

  38. Ran J, Wong MW (2009) Aust J Chem 62:1062–1067

    Article  CAS  Google Scholar 

  39. Wenthold PG, Squires RR (1985) J Phys Chem 99:2002–2005

    Article  Google Scholar 

  40. Wiskur SL, Ait-Haddou H, Lavigne JJ, Anslyn EV (2001) Acc Chem Res 34:963–972

    Article  CAS  Google Scholar 

  41. Böes ES, Andrade JA, Stassen H, Goncalves PFB (2007) Chem Phys Lett 436:362–367

    Article  Google Scholar 

  42. Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU (eds) (2006) Time-dependent density functional theory. Springer, Berlin

    Google Scholar 

  43. Dreuw A, Weisman J, Head-Gordon M (2003) J Chem Phys 119:2943–2946

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National University of Singapore (grant no: R-143-000-253-112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wah Wong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, M.W., Xie, H. & Kwa, S.T. Anion recognition by azophenol thiourea-based chromogenic sensors: a combined DFT and molecular dynamics investigation. J Mol Model 19, 205–213 (2013). https://doi.org/10.1007/s00894-012-1530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1530-0

Keywords

Navigation