Skip to main content
Log in

In silico identification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from Phytophthora sojae

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

As part of an effort to obtain a fungal 1-aminocyclopropane-1-carboxylate deaminase encoding gene from Phytophthora sojae expressed sequence Tag database, we identify and characterize the ACCD from P. sojae using bioinformatics data mining tools and techniques. Computed structural model of P. sojae ACCD was found to consist of mixed α/β motifs and probable loops. The predicted model resembles the structure of Pseudomonas ACCD (RMSD-0.44 Å). The main differences observed between them are the presence of partial length of domain one, and longer helix α4. Ramachandran plot analysis revealed that portion of all residues falling into the most favorable regions was 95.0%. The substrate – and geometrical- docking of developed structure postulated functional capability of ACCD to carry out ACC cleavage reaction. The catalytic site in homo-tetrameric structure open to opposite directions separated by ∼37.97 Å distance arranged around central axis. This study provides a comprehensive identification and characterization of the ACCD in P. sojae and it may be helpful in the transcriptional and expression based study of P. sojae pathogenesis.

1-aminocyclopropane-1-carboxylate deaminase from Phytophthorasoja.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boller T (1991) Ethylene in pathogenasis and disease resistance. In: Mattoo AK, Suttle JC (ed) The plant hormone ethylene, CRC Press, pp 293-314

  2. McKeon T, Yang SF (1987) Biosynthesis and metabolism of ethylene. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Martinus Nijhoff, Boston, pp 94–112

    Chapter  Google Scholar 

  3. Madhaiyan M, Poonguzhali S, Sa T (2007) Characterization of 1-aminocyclopropane-1-carboxylate deaminase containing Methylobacterium spp. Isolated from rhizosphere soils of field-grown rice and regulation of ethylene levels in canola. Planta 226:867–876. doi:10.1007/s00425-007-0532-0

    Article  CAS  Google Scholar 

  4. Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting Pseudomonads. Can J Microbiol 41:533–536. doi:10.1139/m95-070

    Article  CAS  Google Scholar 

  5. Penrose DM, Glick BR (1997) Enzymes that regulate ethylene levels–1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, ACC synthase and ACC oxidase. Indian J Exp Biol 35:1–17

    CAS  Google Scholar 

  6. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentration by the plant growth promoting bacteria. J Theor Biol 190:63–68. doi:10.1006/jtbi.1997.0532

    Article  CAS  Google Scholar 

  7. Sheehy RE, Honma M, Yamada M, Sasaki T, Martineau B, Hiatt WR (1991) Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. Strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase. J Bacteriol 173:5260–5265

    CAS  Google Scholar 

  8. Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plant. Plant Cell 3:1187–1193. doi:10.1105/tpc.3.11.1187

    CAS  Google Scholar 

  9. Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of ACC deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025. doi:10.1139/m94-162

    Article  CAS  Google Scholar 

  10. Campbell BG, Thomson JA (1996) 1-Aminocyclopropane-1-carboxylate deaminase gene from Pseudomonas strains. FEMS Microbiol Lett 138:207–210. doi:10.1016/0378-1097(96)00108-5

    Article  CAS  Google Scholar 

  11. Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase gene from two different plant growth promoting rhizobacteria. Can J Microbiol 44:833–843. doi::10.1139/w98-074

    Article  CAS  Google Scholar 

  12. Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hensula saturnus. J Biochem 123:1112–1118

    Article  CAS  Google Scholar 

  13. Jia YJ, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechanol Biochem 63:542–549. doi:10.1271/bbb.63.542

    Article  CAS  Google Scholar 

  14. Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  Google Scholar 

  15. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Protein 23:318–326. doi:10.1002/prot.340230306

    Article  CAS  Google Scholar 

  16. Laskowski RA, MacArtur MW, Moss DS, Thrnton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  17. Vriend G (1990) WHAT IF: a molecular modeling and drug designing program. J Mol Graph 8:52–56

    Article  CAS  Google Scholar 

  18. Karthikeyan S, Zhou Q, Zhao Z, Kao CL, Tao Z, Robinson H, Liu HW, Zhang H (2004) Structural analysis of Pseudomonas 1-aminocyclopropane-1-carboxylate deaminase complexes: insight into the mechanism of a unique pyridoxal-5'-phosphate dependent cyclopropane ring-opening reaction. Biochemistry 43:13328–13339. doi:10.1021/bi048878g

    Article  CAS  Google Scholar 

  19. Duhovny DS, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acid Res 33:W363–W367. doi:10.1093/nar/gki481

    Article  Google Scholar 

  20. Qutob D, Hraber PT, Sobral BWS, Gijzen M (2000) Comparative analysis of expressed sequences in Phytophthora sojae. Plant Physiol 123:243–253. doi:10.1104/pp.104.055624

    Article  CAS  Google Scholar 

  21. Trudy A, Tripathy S, Smith BM, Arredondo FD, Zhou L, Li H, Chibucos MC, Qutob D, Gijzen M, Mao C, Sobral BWS, Waugh ME, Mitchell TK, Dean RA, Tyler BM (2007) Expressed sequence tags from Phytophthora sojae reveal genes specific to development and infection. Mol Plant Microb Interact 20:781–793. doi:10.1094/MPMI-20-7-0781

    Article  Google Scholar 

  22. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. PNAS 99:3740–3745. doi:10.1073/pnas.052410099

    Article  CAS  Google Scholar 

  23. Knogge W (1996) Fungal infections of plants. Plant Cell 8:1711–1722. doi:10.1105/tpc.8.10.1711

    CAS  Google Scholar 

  24. Collmer A, Badel JL, Charkowski AO, Deng WL, Fouts DE, Ramos AR, Rehm AH, Anderson DM, Schneewind O, van Dijk K, Alfano JR (2000) Pseudomonas syringae Hrp type III secretion system and effector proteins. PNAS 97:8770–8777

    Article  CAS  Google Scholar 

  25. Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE (2001) Common and contrasting themes of plant and animal diseases. Science 292:2285–2289. doi:10.1126/science.1062013

    Article  CAS  Google Scholar 

  26. Huitema E, Bos JIB, Tian M, Win J, Waugh ME, Kamoun S (2004) Linking sequence to phenotype in Phytophthora–plant interactions. Trends Microbiol 12:193–200. doi:10.1016/j.tim.2004.02.008

    Article  CAS  Google Scholar 

  27. Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:2.1–2.20. doi:10.1146/annurev.phyto.44.070505.143436

    Article  Google Scholar 

  28. Ose T, Fujino A, Yao M, Natanabe N, Honma M, Tanaka I (2003) Reaction intermediate structure of 1-aminocyclopropane-1-carboxylate deaminase. J Biol Chem 278:41069–41076. doi:10.1074/jbc.M305865200

    Article  CAS  Google Scholar 

  29. Mehta PK, Christen P (1998) In: Purich DL (ed) Advances in enzymology and related areas of molecular biology. Wiley, New York, pp 129–184

    Google Scholar 

  30. Grishin NV, Phillips MA, Goldsmith EJ (1995) Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci 4:1291–1304. doi:10.1002/pro.5560040705

    Article  CAS  Google Scholar 

  31. Burkhard P, Rao GS, Hohenester E, Schnackerz KD, Cook PF, Jansonius JN (1998) Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol 283:121–133

    Article  CAS  Google Scholar 

  32. Gallagher DT, Gilliland GL, Xiao G, Zondlo J, Fisher KE, Chinchilla D, Eisenstein E (1998) Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase. Structure 6:465–475. doi:10.1016/S0969-2126(98)00048-3

    Article  CAS  Google Scholar 

  33. Rhee S, Miles EW, Davies DR (1998) Cryocrystallography of a true substrate, indole-3-glycerol phosphate, bound to a mutant (RD60N) tryptophan synthase R2â2 complex reveals the correct orientation of active site RGlu49. J Biol Chem 273:8553–8555

    Article  CAS  Google Scholar 

  34. Weyand M, Schlichting I (1999) Crystal structure of wildtype tryptophan synthase complexed with the natural substrate indole-3-glycerol phosphate. Biochemistry 38:16469–16480. doi:10.1021/bi9920533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Indian Council of Agricultural Research for Senior Research Fellowship to NS and Research Associateship to SK under the network project “Application of Microorganisms in Agricultural and Allied Sectors”. Infrastructure facility, support and encouragements by Director of the National Bureau of Agriculturally Important Microorganisms are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhanshu Kashyap.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure

(JPEG 1477 kb)

Supplementary figure

(PDB 118 kb)

Supplementary figure

(PDB 202 kb)

Supplementary figure

(PDB 404 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N., Kashyap, S. In silico identification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from Phytophthora sojae . J Mol Model 18, 4101–4111 (2012). https://doi.org/10.1007/s00894-012-1389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1389-0

Keywords

Navigation