Skip to main content
Log in

Exploration of conformational transition in the aryl-binding site of human FXa using molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Human coagulation Factor X (FX), a member of the vitamin K-dependent serine protease family, is a crucial component of the human coagulation cascade. Activated FX (FXa) participates in forming the prothrombinase complex on activated platelets to convert prothrombin to thrombin in coagulation reactions. In the current study, 30-ns MD simulations were performed on both the open and closed states of human FXa. Root mean squares (RMS) fluctuations showed that structural fluctuations concentrated on the loop regions of FXa, and the presence of a ligand in the closed system resulted in larger fluctuations of the gating residues. The open system had a gating distance from 9.23 to 11.33 Å, i.e., significantly larger than that of the closed system (4.69–6.35 Å), which allows diversified substrates of variable size to enter. Although the solvent accessible surface areas (SASA) of FXa remained the same in both systems, the open system generally had a larger total SASA or hydrophobic SASA (or both) for residues surrounding the S4 pocket. Additionally, more hydrogen bonds were formed in the closed state than in the open state of FXa, which is believed to play a significant role in maintaining the closed confirmation of the aryl-binding site. Based on the results of MD simulations, we propose that an induced-fit mechanism governs the functioning of human coagulation FX, which helps provide a better understanding of the interactions between FXa and its substrate, and the mechanism of the conformational changes involved in human coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Davie EW, Fujikawa K, Kisiel W (1991) The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30:10363–10370

    Article  CAS  Google Scholar 

  2. Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S (1990) Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 76:1–16

    CAS  Google Scholar 

  3. Caldwell SH, Hoffman M, Lisman T, Macik BG, Northup PG, Reddy KR, Tripodi A, Sanyal AJ (2006) Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology 44:1039–1046

    Article  CAS  Google Scholar 

  4. Kozek-Langenecker S (2007) Management of massive operative blood loss. Minerva Anestesiol 73:401–415

    CAS  Google Scholar 

  5. Soliman DE, Broadman LM (2006) Coagulation defects. Anesthesiol Clin 24:549–578, vii

    Article  CAS  Google Scholar 

  6. Telfer TP, Denson KW, Wright DR (1956) A new coagulation defect. Br J Haematol 2:308–316

    Article  CAS  Google Scholar 

  7. Graham JB, Barrow EM, Hougie C (1957) Stuart clotting defect. II. Genetic aspects of a new hemorrhagic state. J Clin Invest 36:497–503

    Article  CAS  Google Scholar 

  8. Bode W, Mayr I, Baumann U, Huber R, Stone SR, Hofsteenge J (1989) The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J 8:3467–3475

    CAS  Google Scholar 

  9. Katz BA, Elrod K, Luong C, Rice MJ, Mackman RL, Sprengeler PA, Spencer J, Hataye J, Janc J, Link J, Litvak J, Rai R, Rice K, Sideris S, Verner E, Young W (2001) A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. J Mol Biol 307:1451–1486

    Article  CAS  Google Scholar 

  10. Bode W, Turk D, Karshikov A (1992) The refined 1.9-A X-ray crystal structure of d-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci 1:426–471

    Article  CAS  Google Scholar 

  11. Katz BA, Elrod K, Verner E, Mackman RL, Luong C, Shrader WD, Sendzik M, Spencer JR, Sprengeler PA, Kolesnikov A, Tai VW, Hui HC, Breitenbucher JG, Allen D, Janc JW (2003) Elaborate manifold of short hydrogen bond arrays mediating binding of active site-directed serine protease inhibitors. J Mol Biol 329:93–120

    Article  CAS  Google Scholar 

  12. Katz BA, Mackman R, Luong C, Radika K, Martelli A, Sprengeler PA, Wang J, Chan H, Wong L (2000) Structural basis for selectivity of a small molecule, S1-binding, submicromolar inhibitor of urokinase-type plasminogen activator. Chem Biol 7:299–312

    Article  CAS  Google Scholar 

  13. Katz BA, Spencer JR, Elrod K, Luong C, Mackman RL, Rice M, Sprengeler PA, Allen D, Janc J (2002) Contribution of multicentered short hydrogen bond arrays to potency of active site-directed serine protease inhibitors. J Am Chem Soc 124:11657–11668

    Article  CAS  Google Scholar 

  14. Parker ET, Pohl J, Blackburn MN, Lollar P (1997) Subunit structure and function of porcine factor Xa-activated factor VIII. Biochemistry 36:9365–9373

    Article  CAS  Google Scholar 

  15. Padmanabhan K, Padmanabhan KP, Tulinsky A, Park CH, Bode W, Huber R, Blankenship DT, Cardin AD, Kisiel W (1993) Structure of human des(1–45) factor Xa at 2.2 A resolution. J Mol Biol 232:947–966

    Article  CAS  Google Scholar 

  16. Singh N, Briggs JM (2008) Molecular dynamics simulations of Factor Xa: insight into conformational transition of its binding subsites. Biopolymer 89:1104–1113

    Article  CAS  Google Scholar 

  17. Wang JF, Wei DQ, Li L, Zheng SY, Li YX, Chou KC (2007) 3D structure modeling of cytochrome P450 2 C19 and its implication for personalized drug design. Biochem Biophys Res Commun 355:513–519

    Article  CAS  Google Scholar 

  18. Wang JF, Wei DQ, Lin Y, Wang YH, Du HL, Li YX, Chou KC (2007) Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Biochem Biophys Res Commun 359:323–329

    Article  CAS  Google Scholar 

  19. Wang JF, Wei DQ, Chen C, Li Y, Chou KC (2008) Molecular modeling of two CYP2C19 SNPs and its implications for personalized drug design. Protein Peptide Lett 15:27–32

    Article  Google Scholar 

  20. Wang JF, Gong K, Wei DQ, Li YX, Chou KC (2009) Molecular dynamics studies on the interactions of PTP1B with inhibitors: from the first phosphate-binding site to the second one. Protein Eng Des Sel 22:349–355

    Article  CAS  Google Scholar 

  21. Wang JF, Wei DQ, Chou KC (2009) Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus. Biochem Biophys Res Commun 388:413–417

    Article  CAS  Google Scholar 

  22. Zeng QK, Du HL, Wang JF, Wei DQ, Wang XN, Li YX, Lin Y (2009) Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis. Biotechnol Lett 31:1025–1029

    Article  CAS  Google Scholar 

  23. Wang Y, Wei DQ, Wang JF (2010) Molecular dynamics studies on T1 lipase: insight into a double-flap mechanism. J Chem Inf Model 50:875–878

    Article  CAS  Google Scholar 

  24. Guo X, Wang JF, Zhu Y, Wei DQ (2010) Recent progress on computer-aided inhibitor design of H5N1 influenza A virus. Curr Comput Aided Drug Des 6:139–146

    Article  CAS  Google Scholar 

  25. Wang JF, Wei DQ (2009) Role of structural bioinformatics and traditional Chinese medicine databases in pharmacogenomics. Pharmacogenomics 10:1213–1215

    Article  CAS  Google Scholar 

  26. Wang JF, Chou KC (2010) Molecular modeling of cytochrome P450 and drug metabolism. Curr Drug Metab 11:342–346

    Article  CAS  Google Scholar 

  27. Wang JF, Chou KC (2010) Insights from studying the mutation-induced allostery in the M2 proton channel by molecular dynamics. Protein Eng Des Sel 23:663–666

    Article  CAS  Google Scholar 

  28. Li L, Wei DQ, Wang JF, Chou KC (2007) Computational studies of the binding mechanism of calmodulin with chrysin. Biochem Biophys Res Commun 358:1102–1107

    Article  CAS  Google Scholar 

  29. Wang JF, Wei DQ, Chou KC (2008) Drug candidates from traditional chinese medicines. Curr Top Med Chem 8:1656–1665

    Article  CAS  Google Scholar 

  30. Lian P, Wei DQ, Wang JF, Chou KC (2011) An allosteric mechanism inferred from molecular dynamics simulations on phospholamban pentamer in lipid membranes. PLoS One 6:e18587

    Article  CAS  Google Scholar 

  31. Wang JF, Wei DQ, Chou KC (2008) Pharmacogenomics and personalized use of drugs. Curr Top Med Chem 8:1573–1579

    Article  CAS  Google Scholar 

  32. Gong K, Li L, Wang JF, Cheng F, Wei DQ, Chou KC (2009) Binding mechanism of H5N1 influenza virus neuraminidase with ligands and its implication for drug design. Med Chem 5:242–249

    Article  CAS  Google Scholar 

  33. Wang JF, Chou KC (2011) Insights from modeling the 3D structure of New Delhi metallo-β-lactamse and its binding interactions with antibiotic drugs. PLoS One 6:e18414

    Article  CAS  Google Scholar 

  34. Gu RX, Gu H, Xie ZY, Wang JF, Arias HR, Wei DQ, Chou KC (2009) Possible drug candidates for Alzheimer’s disease deduced from studying their binding interactions with alpha7 nicotinic acetylcholine receptor. Med Chem 5:250–262

    Article  CAS  Google Scholar 

  35. Wang JF, Yan JY, Wei DQ, Chou KC (2009) Binding of CYP2C9 with diverse drugs and its implications for metabolic mechanism. Med Chem 5:263–270

    Article  CAS  Google Scholar 

  36. Wang JF, Zhang CC, Chou KC, Wei DQ (2009) Structure of cytochrome p450s and personalized drug. Curr Med Chem 16:232–244

    Article  CAS  Google Scholar 

  37. Chen Q, Zhang T, Wang JF, Wei DQ (2011) Advances in human cytochrome P450 and personalized medicine. Curr Drug Metab 12:436–444

    Article  CAS  Google Scholar 

  38. Daura X, Haaksma E, van Gunsteren WF (2000) Factor Xa: simulation studies with an eye to inhibitor design. J Comput Aided Mol Des 14:507–529

    Article  CAS  Google Scholar 

  39. Venkateswarlu D, Perera L, Darden T, Pedersen LG (2002) Structure and dynamics of zymogen human blood coagulation factor X. Biophys J 82:1190–1206

    Article  CAS  Google Scholar 

  40. Corte JR, Fang T, Pinto DJ, Han W, Hu Z, Jiang XJ, Li YL, Gauuan JF, Hadden M, Orton D, Rendina AR, Luettgen JM, Wong PC, He K, Morin PE, Chang CH, Cheney DL, Knabb RM, Wexler RR, Lam PY (2008) Structure-activity relationships of anthranilamide-based factor Xa inhibitors containing piperidinone and pyridinone P4 moieties. Bioorg Med Chem Lett 18:2845–2849

    Article  CAS  Google Scholar 

  41. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  42. Underwood MC, Zhong D, Mathur A, Heyduk T, Bajaj SP (2000) Thermodynamic linkage between the S1 stie, the Na + site, and the Ca2+ site in the protease domain of human coagulation factor xa. J Biol Chem 275:36876–36884

    Article  CAS  Google Scholar 

  43. Griffon N, Di Stasio E (2001) Thermodynamics of Na + binding to coagulation serine proteases. Biophys Chem 90:89–96

    Article  CAS  Google Scholar 

  44. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  45. Scott WRP, Hüenenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krueger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  46. Aalten DM van, Bywater R, Findlay JB, Hendlich M, Hooft RW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10:255–262

    Google Scholar 

  47. Matter H, Nazaré M, Güssregen S, Will DW, Schreuder H, Bauer A, Urmann M, Ritter K, Wagner M, Wehner V (2009) Evidence for C-Cl/C-Br…pi interactions as an important contribution to protein-ligand binding affinity. Angew Chem Int Edn Engl 48:2911–2916

    Article  CAS  Google Scholar 

  48. Wallnoefer HG, Fox T, Liedl KR, Tautermann CS (2010) Dispersion dominate halogen-π interactions: energies and locations of minima. Phys Chem Chem Phys 12:14941–14949

    Article  CAS  Google Scholar 

  49. Sreenivasan U, Axelsen PH (1992) Buried water in homologous serine proteases. Biochemistry 31:12785–12791

    Article  CAS  Google Scholar 

  50. Guvench O, Price DJ, Brooks CL III (2005) Receptor rigidity and ligand mobility in trypsin-ligand complexes. Proteins 58:407–417

    Article  CAS  Google Scholar 

  51. Lesk AM, Fordham WD (1996) Conservation and variability in the structures of serine proteinases of the chymotrypsin family. J Mol Biol 258:501–537

    Article  CAS  Google Scholar 

  52. Wallnoefer HG, Handschuh S, Liedl KR, Fox T (2010) Stabilizing of a globular protein by a highly complex water network: a molecular dynamics simulation study on factor Xa. J Phys Chem B 114:7405–7412

    Article  CAS  Google Scholar 

  53. Miller CA, Gellman SH, Abbott NL, de Pablo JJ (2009) Association of helical beta-peptides and their aggregation behavior from the potential of mean force in explicit solvent. Biophys J 96:4349–4362

    Article  CAS  Google Scholar 

  54. Hlevnjak M, Zitkovic G, Zagrovic B (2010) Hydrophilicity matching: a potential prerequisite for the formation of protein-protein complexes in the cell. PLoS One 5:e11169

    Article  Google Scholar 

  55. Lee C, Ham SJ (2011) Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water. J Comput Chem 32:349–355

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Basic Research Program of China (973 Program, No. 2011CB910204 and 2012CB316501), Research Program of CAS (KSCX2-EW-R-04), National Natural Science Foundation of China (No. 30900272), Shanghai Natural Science Foundation (No. 10ZR1421500), China Postdoctoral Science Foundation (No. 20110490068), and in part by Shanghai Pujiang Scholarship Program (No. 10PJ1408000). The authors gratefully acknowledge the support of SA-SIBS scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Fang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JF., Hao, P., Li, YX. et al. Exploration of conformational transition in the aryl-binding site of human FXa using molecular dynamics simulations. J Mol Model 18, 2717–2725 (2012). https://doi.org/10.1007/s00894-011-1295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1295-x

Keywords

Navigation